論文の概要: Quantifying the uncertainty of model-based synthetic image quality metrics
- arxiv url: http://arxiv.org/abs/2504.03623v1
- Date: Fri, 04 Apr 2025 17:41:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:00.437793
- Title: Quantifying the uncertainty of model-based synthetic image quality metrics
- Title(参考訳): モデルベース合成画像品質指標の不確かさの定量化
- Authors: Ciaran Bench, Spencer A. Thomas,
- Abstract要約: 不確実性定量化(UQ)は、Fr'echet Autoencoder Distance (FAED)と呼ばれる特徴埋め込みモデルとFIDのような計量の信頼性の尺度を提供するために用いられる。
我々は、埋め込みの予測的分散と計算されたFAED値の標準偏差として不確実性を表現している。
その大きさは、入力がモデルのトレーニングデータに寄与しない程度と相関し、FAEDの信頼性を評価する能力の検証を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The quality of synthetically generated images (e.g. those produced by diffusion models) are often evaluated using information about image contents encoded by pretrained auxiliary models. For example, the Fr\'{e}chet Inception Distance (FID) uses embeddings from an InceptionV3 model pretrained to classify ImageNet. The effectiveness of this feature embedding model has considerable impact on the trustworthiness of the calculated metric (affecting its suitability in several domains, including medical imaging). Here, uncertainty quantification (UQ) is used to provide a heuristic measure of the trustworthiness of the feature embedding model and an FID-like metric called the Fr\'{e}chet Autoencoder Distance (FAED). We apply Monte Carlo dropout to a feature embedding model (convolutional autoencoder) to model the uncertainty in its embeddings. The distribution of embeddings for each input are then used to compute a distribution of FAED values. We express uncertainty as the predictive variance of the embeddings as well as the standard deviation of the computed FAED values. We find that their magnitude correlates with the extent to which the inputs are out-of-distribution to the model's training data, providing some validation of its ability to assess the trustworthiness of the FAED.
- Abstract(参考訳): 合成画像の品質(例えば拡散モデルで生成したもの)は、事前訓練された補助モデルによって符号化された画像内容に関する情報を用いて評価されることが多い。
例えば、Fr\'{e}chet Inception Distance (FID)は、ImageNetを分類するために事前訓練されたInceptionV3モデルの埋め込みを使用する。
この特徴埋め込みモデルの有効性は、計算された指標の信頼性(医療画像を含むいくつかの領域における適合性の影響)に大きな影響を及ぼす。
ここで、不確実量化(UQ)は、特徴埋め込みモデルの信頼性のヒューリスティックな尺度と、Fr\'{e}chet Autoencoder Distance (FAED)と呼ばれるFIDのような計量を提供するために用いられる。
我々はモンテカルロ・ドロップアウトを特徴埋め込みモデル(畳み込みオートエンコーダ)に適用し、その埋め込みの不確実性をモデル化する。
次に、各入力に対する埋め込みの分布を用いてFAED値の分布を計算する。
我々は、埋め込みの予測的分散と計算されたFAED値の標準偏差として不確実性を表現している。
その大きさは、入力がモデルのトレーニングデータに寄与しない程度と相関し、FAEDの信頼性を評価する能力の検証を可能にする。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Rethinking interpretation: Input-agnostic saliency mapping of deep
visual classifiers [28.28834523468462]
Saliencyメソッドは、入力特徴をモデル出力に寄与させることで、ポストホックモデルの解釈を提供する。
入力特異性マッピングは本質的に誤解を招く特徴の帰属に影響を受けやすいことを示す。
本稿では,モデルが持つ高次特徴をその出力に対して計算的に推定する,入力非依存のサリエンシマッピングの新たな視点を紹介する。
論文 参考訳(メタデータ) (2023-03-31T06:58:45Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
本稿では,VAEフレームワークの計算上の利点を犠牲にすることなく,モデル容量を拡大する手法を提案する。
VAEモデルのデコーダは、非対称ラプラス分布の無限混合からなる。
提案したモデルを合成データ生成に適用し,特にデータプライバシの調整が容易であることを示す。
論文 参考訳(メタデータ) (2023-02-22T11:26:50Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
視覚オドメトリー(VO)は、ロボット工学や自律システムを含む多くのアプリケーションで使われている。
本研究では、6-DoFのポーズを推定する深層学習に基づくVOモデルと、これらの推定に対する信頼度モデルを提案する。
本実験は,本モデルが故障事例の検出に加えて,最先端の性能を上回ることを示す。
論文 参考訳(メタデータ) (2021-12-23T19:26:04Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
生成確率モデルを学習することは、機械学習における中核的な問題である。
本稿では,共同次元化と非パラメトリック密度推定の枠組みを提案する。
提案手法は, 回帰処理, サンプリング, 異常検出において, 極めて有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-06-20T00:38:56Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。