Reciprocity-Aware Convolutional Neural Networks for Map-Based Path Loss Prediction
- URL: http://arxiv.org/abs/2504.03625v1
- Date: Fri, 04 Apr 2025 17:44:14 GMT
- Title: Reciprocity-Aware Convolutional Neural Networks for Map-Based Path Loss Prediction
- Authors: Ryan G. Dempsey, Jonathan Ethier, Halim Yanikomeroglu,
- Abstract summary: Path loss modeling is a widely used technique for estimating point-to-point losses along a communications link from transmitter (Tx) to receiver (Rx)<n>Modern path loss modeling often leverages data-driven approaches, using machine learning to train models on drive test measurement datasets.<n>In this paper, we demonstrate that data augmentation can be used to train a path loss model that is generalized to uplink, downlink, and backhaul scenarios.
- Score: 20.62701088477552
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Path loss modeling is a widely used technique for estimating point-to-point losses along a communications link from transmitter (Tx) to receiver (Rx). Accurate path loss predictions can optimize use of the radio frequency spectrum and minimize unwanted interference. Modern path loss modeling often leverages data-driven approaches, using machine learning to train models on drive test measurement datasets. Drive tests primarily represent downlink scenarios, where the Tx is located on a building and the Rx is located on a moving vehicle. Consequently, trained models are frequently reserved for downlink coverage estimation, lacking representation of uplink scenarios. In this paper, we demonstrate that data augmentation can be used to train a path loss model that is generalized to uplink, downlink, and backhaul scenarios, training using only downlink drive test measurements. By adding a small number of synthetic samples representing uplink scenarios to the training set, root mean squared error is reduced by >8 dB on uplink examples in the test set.
Related papers
- Map-Based Path Loss Prediction in Multiple Cities Using Convolutional Neural Networks [20.62701088477552]
Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth.
We propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from 2-D obstruction height maps.
arXiv Detail & Related papers (2024-11-25T16:20:49Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction
from Variable-Sized Maps [11.327456466796681]
Estimating path loss for a transmitter-receiver location is key to many use-cases including network planning and handover.
We present a transformer-based neural network architecture that enables predicting link-level properties from maps of various dimensions and from sparse measurements.
arXiv Detail & Related papers (2023-10-06T20:17:40Z) - Estimating Link Flows in Road Networks with Synthetic Trajectory Data
Generation: Reinforcement Learning-based Approaches [7.369475193451259]
This paper addresses the problem of estimating link flows in a road network by combining limited traffic volume and vehicle trajectory data.
We propose a novel generative modelling framework, where we formulate the link-to-link movements of a vehicle as a sequential decision-making problem.
To ensure the generated population vehicle trajectories are consistent with the observed traffic volume and trajectory data, two methods based on Inverse Reinforcement Learning and Constrained Reinforcement Learning are proposed.
arXiv Detail & Related papers (2022-06-26T13:14:52Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
We propose a parametrically constrained variational autoencoder, capable of generating the clustered and localized target detections on the range-angle image.
To circumvent the problem of training the proposed neural network on all possible scenarios using real radar data, we propose domain adaptation strategies.
arXiv Detail & Related papers (2022-05-30T16:17:36Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks [0.28675177318965034]
This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values.
Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs.
A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow.
arXiv Detail & Related papers (2022-04-21T15:57:08Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
Recent progress in few-shot learning promotes a more realistic cross-domain setting.
Due to the domain gap and disjoint label spaces between source and target datasets, their shared knowledge is extremely limited.
We employ a re-ranking process for calibrating a target distance matrix by discovering the reciprocal k-nearest neighbours within the task.
arXiv Detail & Related papers (2021-12-01T03:36:58Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.