Artificial Geographically Weighted Neural Network: A Novel Framework for Spatial Analysis with Geographically Weighted Layers
- URL: http://arxiv.org/abs/2504.03734v1
- Date: Tue, 01 Apr 2025 01:48:46 GMT
- Title: Artificial Geographically Weighted Neural Network: A Novel Framework for Spatial Analysis with Geographically Weighted Layers
- Authors: Jianfei Cao, Dongchao Wang,
- Abstract summary: AGWNN is a novel framework that integrates geographically weighted techniques with neural networks to capture complex nonlinear spatial relationships.<n>To rigorously evaluate the performance of AGWNN, we conducted comprehensive experiments using both simulated datasets and real-world case studies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geographically Weighted Regression (GWR) is a widely recognized technique for modeling spatial heterogeneity. However, it is commonly assumed that the relationships between dependent and independent variables are linear. To overcome this limitation, we propose an Artificial Geographically Weighted Neural Network (AGWNN), a novel framework that integrates geographically weighted techniques with neural networks to capture complex nonlinear spatial relationships. Central to this framework is the Geographically Weighted Layer (GWL), a specialized component designed to encode spatial heterogeneity within the neural network architecture. To rigorously evaluate the performance of AGWNN, we conducted comprehensive experiments using both simulated datasets and real-world case studies. Our results demonstrate that AGWNN significantly outperforms traditional GWR and standard Artificial Neural Networks (ANNs) in terms of model fitting accuracy. Notably, AGWNN excels in modeling intricate nonlinear relationships and effectively identifies complex spatial heterogeneity patterns, offering a robust and versatile tool for advanced spatial analysis.
Related papers
- RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks [8.132751508556078]
We propose to model spatial process heterogeneity at the regional level rather than at the individual level.<n>Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election.
arXiv Detail & Related papers (2025-01-29T12:09:01Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Cybercrime Prediction via Geographically Weighted Learning [0.24578723416255752]
We propose a graph neural network model that accounts for geographical latitude and longitudinal points.
Using a synthetically generated dataset, we apply the algorithm for a 4-class classification problem in cybersecurity.
We demonstrate that it has higher accuracy than standard neural networks and convolutional neural networks.
arXiv Detail & Related papers (2024-11-07T11:46:48Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural networks for geospatial data [0.0]
NN-GLS is a new neural network estimation algorithm for the non-linear mean in GP models.
We show that NN-GLS admits a representation as a special type of graph neural network (GNN)
Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes.
arXiv Detail & Related papers (2023-04-18T17:52:23Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Positional Encoder Graph Neural Networks for Geographic Data [1.840220263320992]
Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data.
In this paper, we propose PE-GNN, a new framework that incorporates spatial context and correlation explicitly into the models.
arXiv Detail & Related papers (2021-11-19T10:41:49Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.