Uncertainty Propagation in XAI: A Comparison of Analytical and Empirical Estimators
- URL: http://arxiv.org/abs/2504.03736v1
- Date: Tue, 01 Apr 2025 07:06:31 GMT
- Title: Uncertainty Propagation in XAI: A Comparison of Analytical and Empirical Estimators
- Authors: Teodor Chiaburu, Felix Bießmann, Frank Haußer,
- Abstract summary: Understanding uncertainty in Explainable AI (XAI) is crucial for building trust.<n>This paper introduces a unified framework for quantifying and interpreting Uncertainty in XAI.<n>By using both analytical and empirical estimates of explanation variance, we provide a systematic means of assessing the impact uncertainty on explanations.
- Score: 1.0855602842179624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding uncertainty in Explainable AI (XAI) is crucial for building trust and ensuring reliable decision-making in Machine Learning models. This paper introduces a unified framework for quantifying and interpreting Uncertainty in XAI by defining a general explanation function $e_{\theta}(x, f)$ that captures the propagation of uncertainty from key sources: perturbations in input data and model parameters. By using both analytical and empirical estimates of explanation variance, we provide a systematic means of assessing the impact uncertainty on explanations. We illustrate the approach using a first-order uncertainty propagation as the analytical estimator. In a comprehensive evaluation across heterogeneous datasets, we compare analytical and empirical estimates of uncertainty propagation and evaluate their robustness. Extending previous work on inconsistencies in explanations, our experiments identify XAI methods that do not reliably capture and propagate uncertainty. Our findings underscore the importance of uncertainty-aware explanations in high-stakes applications and offer new insights into the limitations of current XAI methods. The code for the experiments can be found in our repository at https://github.com/TeodorChiaburu/UXAI
Related papers
- Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.<n>We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
Uncertainty is a key feature of any machine learning model.
It is particularly important in neural networks, which tend to be overconfident.
Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks.
arXiv Detail & Related papers (2024-03-15T10:22:48Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
We present a simple approach to explain predictive aleatoric uncertainties.
We estimate uncertainty as predictive variance by adapting a neural network with a Gaussian output distribution.
We quantify our findings with a nuanced benchmark analysis that includes real-world datasets.
arXiv Detail & Related papers (2023-12-12T13:28:53Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Information-theoretic Analysis of Test Data Sensitivity in Uncertainty [32.27260899727789]
A recent analysis by Xu and Raginsky 2022 rigorously decomposed the predictive uncertainty in Bayesian inference into two uncertainties.
They analyzed those uncertainties in an information-theoretic way, assuming that the model is well-specified and treating the model's parameters as latent variables.
In this work, we study such uncertainty sensitivity using our novel decomposition method for the predictive uncertainty.
arXiv Detail & Related papers (2023-07-23T23:42:06Z) - Causality-Aware Local Interpretable Model-Agnostic Explanations [7.412445894287709]
We propose a novel extension to a widely used local and model-agnostic explainer, which encodes explicit causal relationships within the data surrounding the instance being explained.
Our approach overcomes the original method in terms of faithfully replicating the black-box model's mechanism and the consistency and reliability of the generated explanations.
arXiv Detail & Related papers (2022-12-10T10:12:27Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.