論文の概要: MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
- arxiv url: http://arxiv.org/abs/2504.03767v2
- Date: Fri, 11 Apr 2025 16:59:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:17:10.373419
- Title: MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
- Title(参考訳): MCP安全性監査: LLMs with the Model Context Protocol
- Authors: Brandon Radosevich, John Halloran,
- Abstract要約: Model Context Protocol (MCP) は、大規模言語モデル(LLM)、データソース、エージェントツールへのAPI呼び出しを標準化するオープンプロトコルである。
現在のMPP設計はエンドユーザーに幅広いセキュリティリスクをもたらすことを示す。
任意のMPPサーバのセキュリティを評価するために,安全監査ツールであるMPPSafetyScannerを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner
- Abstract(参考訳): 開発オーバーヘッドを低減し、任意の生成AIアプリケーションを含む潜在的コンポーネント間のシームレスな統合を可能にするため、Model Context Protocol (MCP)(Anthropic, 2024)が最近リリースされ、その後広く採用されている。
MCPは、大規模言語モデル(LLM)、データソース、エージェントツールへのAPI呼び出しを標準化するオープンプロトコルである。
複数のMPPサーバを接続することで、それぞれがツール、リソース、プロンプトのセットで定義され、LLMによって完全に駆動される自動化ワークフローを定義することができる。
しかし,現在のMPP設計では,エンドユーザーには幅広いセキュリティリスクが伴っている。
特に、業界をリードするLSMが、悪意のあるコード実行、リモートアクセス制御、クレデンシャル盗難など、さまざまな攻撃を通じてAI開発者のシステムに侵入するために、MPPツールを使用することを実証する。
これらの攻撃を積極的に軽減するために、任意のMPPサーバのセキュリティを評価する最初のエージェントツールである安全監査ツールMCPSafetyScannerを導入する。
MCPScannerはいくつかのエージェントを使用します
a) MCPサーバのツール及びリソースが与えられた敵のサンプルを自動的に判定する。
ロ 当該サンプルに基づく関連脆弱性及び対策の検索及び
(c)すべての発見を詳述したセキュリティレポートを作成する。
我々の研究は汎用エージェントワークフローにおける深刻なセキュリティ問題を強調しつつ、MSPサーバの安全性を監査し、デプロイ前に検出された脆弱性に対処するための積極的なツールを提供する。
MCPサーバ監査ツールであるMPPSafetyScannerは、https://github.com/johnhalloran321/mcpSafetyScannerで無料で利用可能である。
関連論文リスト
- Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
本稿では,大規模言語モデル(LLM)の安全性を評価するための新しいアプローチを提案する。
我々は、プロンプトリークをLLMデプロイメントの安全性にとって重要な脅威と定義する。
我々は,協調エージェントが目的のLLMを探索・活用し,そのプロンプトを抽出するマルチエージェントシステムを実装した。
論文 参考訳(メタデータ) (2025-02-18T08:17:32Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing [6.334110674473677]
既存のアプローチは、セキュアで脆弱性のないコードを生成するのに苦労するコード生成に、単一のエージェントに依存することが多い。
コード生成,脆弱性解析,セキュリティ強化にLLM駆動エージェントを活用するマルチエージェントフレームワークであるAutoSafeCoderを提案する。
私たちのコントリビューションは、コード生成中に反復的なプロセスで動的および静的なテストを統合することで、マルチエージェントコード生成の安全性を確保することに焦点を当てています。
論文 参考訳(メタデータ) (2024-09-16T21:15:56Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning [87.1610740406279]
ホワイトハウス人工知能に関する大統領令は、生物、サイバー、化学兵器の開発において悪意あるアクターに力を与える大きな言語モデル(LLM)のリスクを強調している。
現在の評価は非公開であり、リスク軽減のさらなる研究を妨げている。
Weapons of Mass Destruction Proxyベンチマークを公開しています。
論文 参考訳(メタデータ) (2024-03-05T18:59:35Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Identifying and Mitigating Vulnerabilities in LLM-Integrated
Applications [37.316238236750415]
LLM統合アプリケーションのバックエンドとして,大規模言語モデル(LLM)がますます多くデプロイされている。
本研究では,ユーザとLLMがLLM統合アプリケーションを介して,中間で対話する環境について考察する。
悪意のあるアプリケーション開発者や外部からの脅威から生じる可能性のある潜在的な脆弱性を特定します。
我々は、内部の脅威と外部の脅威の両方を緩和する軽量で脅威に依存しない防御を開発する。
論文 参考訳(メタデータ) (2023-11-07T20:13:05Z) - Identifying the Risks of LM Agents with an LM-Emulated Sandbox [68.26587052548287]
言語モデル(LM)エージェントとツールは、豊富な機能セットを可能にすると同時に、潜在的なリスクを増幅する。
これらのエージェントを高いコストでテストすることは、高いリスクと長い尾のリスクを見つけるのをますます困難にします。
ツール実行をエミュレートするためにLMを使用し、さまざまなツールやシナリオに対してLMエージェントのテストを可能にするフレームワークであるToolEmuを紹介します。
論文 参考訳(メタデータ) (2023-09-25T17:08:02Z) - RatGPT: Turning online LLMs into Proxies for Malware Attacks [0.0]
本稿では、ChatGPTが検出を回避しつつ悪意あるソフトウェアの普及に使用される概念実証について述べる。
我々はまた、検出されていないまま攻撃を成功させるために、一般的なアプローチと重要な要素を提示する。
論文 参考訳(メタデータ) (2023-08-17T20:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。