論文の概要: Window Token Concatenation for Efficient Visual Large Language Models
- arxiv url: http://arxiv.org/abs/2504.04024v1
- Date: Sat, 05 Apr 2025 02:32:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:39.711388
- Title: Window Token Concatenation for Efficient Visual Large Language Models
- Title(参考訳): 効率的な視覚大言語モデルのためのウィンドウトークン結合
- Authors: Yifan Li, Wentao Bao, Botao Ye, Zhen Tan, Tianlong Chen, Huan Liu, Yu Kong,
- Abstract要約: 視覚的大言語モデル(VLLM)における視覚トークンを減らすために,ウィンドウトークン結合(WiCo)を提案する。
WiCoグループはさまざまなトークンをひとつに分類し、いくつかの細かい詳細を曖昧にします。
我々はLLaVA-1.5とShikraをベースとした粗くきめ細かな視覚的理解タスクについて広範囲に実験を行い、既存のトークン低減プロジェクタと比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 59.6094005814282
- License:
- Abstract: To effectively reduce the visual tokens in Visual Large Language Models (VLLMs), we propose a novel approach called Window Token Concatenation (WiCo). Specifically, we employ a sliding window to concatenate spatially adjacent visual tokens. However, directly concatenating these tokens may group diverse tokens into one, and thus obscure some fine details. To address this challenge, we propose fine-tuning the last few layers of the vision encoder to adaptively adjust the visual tokens, encouraging that those within the same window exhibit similar features. To further enhance the performance on fine-grained visual understanding tasks, we introduce WiCo+, which decomposes the visual tokens in later layers of the LLM. Such a design enjoys the merits of the large perception field of the LLM for fine-grained visual understanding while keeping a small number of visual tokens for efficient inference. We perform extensive experiments on both coarse- and fine-grained visual understanding tasks based on LLaVA-1.5 and Shikra, showing better performance compared with existing token reduction projectors. The code is available: https://github.com/JackYFL/WiCo.
- Abstract(参考訳): 視覚大言語モデル(VLLM)の視覚的トークンを効果的に削減するために,ウィンドウトークン結合(WiCo)と呼ばれる新しいアプローチを提案する。
具体的には,空間的に隣接した視覚トークンを連結するスライディングウィンドウを用いる。
しかし、これらのトークンを直接結合することは、様々なトークンを一つにまとめ、いくつかの細かい詳細を曖昧にする可能性がある。
この課題に対処するため、視覚トークンを適応的に調整するために、視覚エンコーダの最後の数層を微調整し、同じウィンドウ内でも同様の機能を示すよう推奨する。
細粒度視覚理解タスクの性能を高めるために,LLMの後層で視覚トークンを分解するWiCo+を導入する。
このような設計は、効率的な推論のために少数の視覚トークンを保持しながら、細粒度の視覚的理解のためのLLMの認識領域の大きな利点を享受する。
我々はLLaVA-1.5とShikraをベースとした粗くきめ細かな視覚的理解タスクについて広範囲に実験を行い、既存のトークン低減プロジェクタと比較して優れた性能を示した。
コードはhttps://github.com/JackYFL/WiCo.comで入手できる。
関連論文リスト
- [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - [CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster [26.025260449905577]
大規模言語モデル(LLM)におけるテキスト・ビジュアル・クロスアテンションに基づく視覚トークンの重要性を評価する既存手法
我々は、視覚的トークンの重要性をより正確に評価する、トレーニング不要な視覚的トークンプルーニング手法であるFasterVLMを紹介した。
FasterVLMは、LLaVA-1.5-7Bの性能の90%を維持しながら、95%の視覚トークンをプルーする。
論文 参考訳(メタデータ) (2024-12-02T18:57:40Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
VLMは、大量の入力トークンを処理するのに必要な計算量が多いため、推論中に高いレイテンシで制約されることが多い。
高いトークン圧縮設定に適したアプローチを構築するために、最初のステップを踏み出します。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - Efficient Vision-Language Models by Summarizing Visual Tokens into Compact Registers [32.167072183575925]
本稿では,より小さなレジスタトークン集合に要約することで,視覚トークンの数を削減できる手法を提案する。
ビクターは4%未満の精度低下を示し、トレーニング時間を43%削減し、推論スループットを3.3倍に向上させる。
論文 参考訳(メタデータ) (2024-10-17T22:45:13Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
MLLM(Multimodal Large Language Models)は、視覚エンコーダからの視覚トークンをテキストトークンとして扱う。
トークンの数が増加するにつれて、LLMにおける計算の2次スケーリングは効率のボトルネックをもたらす。
本研究では,LLaVAにおけるパラメータと計算パターンの両レベルでの視覚計算の冗長性について検討する。
論文 参考訳(メタデータ) (2024-10-08T16:13:24Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
ビジュアルプロジェクタは、ビジュアルエンコーダとLarge Language Model(LLM)の間に必須のブリッジとして機能する。
本稿では,密集した特徴を注入して凝縮した視覚トークンを生成するために,粗く細かなスキームを取り入れた新しいビジュアルプロジェクタを提案する。
我々のアプローチでは、ビジュアルトークンを75%89%圧縮し、多様なベンチマークで同等またはさらに優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-02T16:10:55Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。