OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
- URL: http://arxiv.org/abs/2504.04160v1
- Date: Sat, 05 Apr 2025 12:44:21 GMT
- Title: OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
- Authors: Alexandre Oliveira, Katarina Dyreby, Francisco Caldas, Cláudia Soares,
- Abstract summary: OrbitZoo is a versatile multi-agent RL environment built on a high-fidelity industry standard library.<n>It supports scenarios like collision avoidance and cooperative maneuvers, and ensures robust and accurate orbital dynamics.<n>It is validated against a real satellite constellation, Starlink, achieving a Mean Absolute Percentage Error (MAPE) of 0.16% compared to real-world data.
- Score: 43.410962336636224
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing number of satellites and orbital debris has made space congestion a critical issue, threatening satellite safety and sustainability. Challenges such as collision avoidance, station-keeping, and orbital maneuvering require advanced techniques to handle dynamic uncertainties and multi-agent interactions. Reinforcement learning (RL) has shown promise in this domain, enabling adaptive, autonomous policies for space operations; however, many existing RL frameworks rely on custom-built environments developed from scratch, which often use simplified models and require significant time to implement and validate the orbital dynamics, limiting their ability to fully capture real-world complexities. To address this, we introduce OrbitZoo, a versatile multi-agent RL environment built on a high-fidelity industry standard library, that enables realistic data generation, supports scenarios like collision avoidance and cooperative maneuvers, and ensures robust and accurate orbital dynamics. The environment is validated against a real satellite constellation, Starlink, achieving a Mean Absolute Percentage Error (MAPE) of 0.16% compared to real-world data. This validation ensures reliability for generating high-fidelity simulations and enabling autonomous and independent satellite operations.
Related papers
- Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.<n>This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
This study develops an AI-based implementation of autonomous On-Orbit Servicing (OOS) mission to assist with spacecraft collision avoidance maneuvers (CAMs)
We propose an autonomous servicer' trained with Reinforcement Learning (RL) to autonomously detect potential collisions between a target satellite and space debris, rendezvous and dock with endangered satellites, and execute optimal CAM.
arXiv Detail & Related papers (2024-09-25T17:40:37Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
This work proposes an implementation of autonomous CA decision-making capabilities on spacecraft based on Reinforcement Learning techniques.
The proposed framework considers imperfect monitoring information about the status of the debris in orbit and allows the AI system to effectively learn policies to perform accurate Collision Avoidance Maneuvers (CAMs)
The objective is to successfully delegate the decision-making process for autonomously implementing a CAM to the spacecraft without human intervention.
arXiv Detail & Related papers (2023-10-29T10:15:33Z) - FedSpace: An Efficient Federated Learning Framework at Satellites and
Ground Stations [10.250105527148731]
Large-scale deployments of low Earth orbit (LEO) satellites collect massive amount of Earth imageries and sensor data.
It is often infeasible to download all the high-resolution images and train these machine learning models on the ground because of limited downlink bandwidth, sparse connectivity, and regularization constraints on the imagery resolution.
We propose Federated Learning (FL), where ground stations and satellites collaboratively train a global ML model without sharing the captured images on the satellites.
arXiv Detail & Related papers (2022-02-02T20:09:27Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
Deep reinforcement learning (DRL) has shown great potential for a wide range of applications.
In this work, a subset of the International Regulations for Preventing Collisions at Sea (COLREGs) is incorporated into a DRL-based path following and obstacle avoidance system.
The resulting autonomous agent dynamically interpolates between path following and COLREG-compliant collision avoidance in the training scenario, isolated encounter situations, and AIS-based simulations of real-world scenarios.
arXiv Detail & Related papers (2021-11-30T21:32:59Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
Traditional approaches to quadruped control employ simplified, hand-derived models.
This significantly reduces the capability of the robot since its effective kinematic range is curtailed.
In this work, these challenges are addressed by framing quadruped control as optimisation in a structured latent space.
A deep generative model captures a statistical representation of feasible joint configurations, whilst complex dynamic and terminal constraints are expressed via high-level, semantic indicators.
We validate the feasibility of locomotion trajectories optimised using our approach both in simulation and on a real-worldmal quadruped.
arXiv Detail & Related papers (2020-07-03T07:04:18Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.