MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2504.04164v1
- Date: Sat, 05 Apr 2025 12:57:31 GMT
- Title: MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
- Authors: Shiguang Sun, Hanbo Zhang, Zeyang Liu, Xinrui Yang, Lipeng Wan, Bing Yan, Xingyu Chen, Xuguang Lan,
- Abstract summary: Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts.<n>We present MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning.<n>We evaluate our method on several robotic control tasks with dynamic background distractions.
- Score: 29.087810262499634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.
Related papers
- Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent [72.1517476116743]
Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets.
Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue.
We introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation forgetting.
We propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations.
arXiv Detail & Related papers (2025-02-17T12:26:34Z) - Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning [3.8309622155866583]
We introduce the Sliding Puzzles Gym (SPGym), a novel benchmark that reimagines the classic 8-tile puzzle with a visual observation space of images sourced from arbitrarily large datasets.<n>SPGym provides precise control over representation complexity through visual diversity, allowing researchers to systematically scale the representation learning challenge.<n>As we increase visual diversity by expanding the pool of possible images, all tested algorithms show significant performance degradation.
arXiv Detail & Related papers (2024-10-17T21:23:03Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling on a continuous domain for the data prediction task of (multimodal) self-supervised representation learning.<n>We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.<n>We propose a novel non-parametric method for approximating the sum of conditional probability densities required by MIS.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - MOOSS: Mask-Enhanced Temporal Contrastive Learning for Smooth State Evolution in Visual Reinforcement Learning [8.61492882526007]
In visual Reinforcement Learning (RL), learning from pixel-based observations poses significant challenges on sample efficiency.
We introduce MOOSS, a novel framework that leverages a temporal contrastive objective with the help of graph-based spatial-temporal masking.
Our evaluation on multiple continuous and discrete control benchmarks shows that MOOSS outperforms previous state-of-the-art visual RL methods in terms of sample efficiency.
arXiv Detail & Related papers (2024-09-02T18:57:53Z) - Visual In-Context Learning for Large Vision-Language Models [62.5507897575317]
In Large Visual Language Models (LVLMs) the efficacy of In-Context Learning (ICL) remains limited by challenges in cross-modal interactions and representation disparities.
We introduce a novel Visual In-Context Learning (VICL) method comprising Visual Demonstration Retrieval, Intent-Oriented Image Summarization, and Intent-Oriented Demonstration Composition.
Our approach retrieves images via ''Retrieval & Rerank'' paradigm, summarises images with task intent and task-specific visual parsing, and composes language-based demonstrations.
arXiv Detail & Related papers (2024-02-18T12:43:38Z) - HarmonyDream: Task Harmonization Inside World Models [93.07314830304193]
Model-based reinforcement learning (MBRL) holds the promise of sample-efficient learning.
We propose a simple yet effective approach, HarmonyDream, which automatically adjusts loss coefficients to maintain task harmonization.
arXiv Detail & Related papers (2023-09-30T11:38:13Z) - VIBR: Learning View-Invariant Value Functions for Robust Visual Control [3.2307366446033945]
VIBR (View-Invariant Bellman Residuals) is a method that combines multi-view training and invariant prediction to reduce out-of-distribution gap for RL based visuomotor control.
We show that VIBR outperforms existing methods on complex visuo-motor control environment with high visual perturbation.
arXiv Detail & Related papers (2023-06-14T14:37:34Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
We propose a novel collaborative learning scheme from the viewpoint of visual perturbation calibration.
Specifically, we devise a visual controller to construct two sorts of curated images with different perturbation extents.
The experimental results on two diagnostic VQA-CP benchmark datasets evidently demonstrate its effectiveness.
arXiv Detail & Related papers (2022-07-24T23:50:52Z) - Accelerating Representation Learning with View-Consistent Dynamics in
Data-Efficient Reinforcement Learning [12.485293708638292]
We propose to accelerate state representation learning by enforcing view-consistency on the dynamics.
We introduce a formalism of Multi-view Markov Decision Process (MMDP) that incorporates multiple views of the state.
Following the structure of MMDP, our method, View-Consistent Dynamics (VCD), learns state representations by training a view-consistent dynamics model in the latent space.
arXiv Detail & Related papers (2022-01-18T14:28:30Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Learning Task Informed Abstractions [10.920599910769276]
We propose learning Task Informed Abstractions (TIA) that explicitly separates reward-correlated visual features from distractors.
TIA leads to significant performance gains over state-of-the-art methods on many visual control tasks.
arXiv Detail & Related papers (2021-06-29T17:56:11Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
We propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks.
We evaluate our method in the context of visual-control learning of drones over a series of complex tasks.
arXiv Detail & Related papers (2021-06-15T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.