論文の概要: Adaptive Elicitation of Latent Information Using Natural Language
- arxiv url: http://arxiv.org/abs/2504.04204v1
- Date: Sat, 05 Apr 2025 15:18:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:37.620185
- Title: Adaptive Elicitation of Latent Information Using Natural Language
- Title(参考訳): 自然言語を用いた潜時情報の適応的除去
- Authors: Jimmy Wang, Thomas Zollo, Richard Zemel, Hongseok Namkoong,
- Abstract要約: 本稿では,潜在エンティティの不確かさを積極的に軽減する適応型エレクテーションフレームワークを提案する。
我々のフレームワークは,メタ学習言語モデルを用いて将来の観測をシミュレートし,不確実性を予測する。
20の質問ゲーム、動的世論ポーリング、適応的学生評価の実験において、本手法は批判的未知を識別する基準線を一貫して上回っている。
- 参考スコア(独自算出の注目度): 6.162198958758635
- License:
- Abstract: Eliciting information to reduce uncertainty about a latent entity is a critical task in many application domains, e.g., assessing individual student learning outcomes, diagnosing underlying diseases, or learning user preferences. Though natural language is a powerful medium for this purpose, large language models (LLMs) and existing fine-tuning algorithms lack mechanisms for strategically gathering information to refine their own understanding of the latent entity. To harness the generalization power and world knowledge of LLMs in developing effective information-gathering strategies, we propose an adaptive elicitation framework that actively reduces uncertainty on the latent entity. Since probabilistic modeling of an abstract latent entity is difficult, our framework adopts a predictive view of uncertainty, using a meta-learned language model to simulate future observations and enable scalable uncertainty quantification over complex natural language. Through autoregressive forward simulation, our model quantifies how new questions reduce epistemic uncertainty, enabling the development of sophisticated information-gathering strategies to choose the most informative next queries. In experiments on the 20 questions game, dynamic opinion polling, and adaptive student assessment, our method consistently outperforms baselines in identifying critical unknowns and improving downstream predictions, illustrating the promise of strategic information gathering in natural language settings.
- Abstract(参考訳): 潜伏したエンティティに関する不確実性を減らすための情報伝達は、例えば、個々の学習結果の評価、基礎疾患の診断、ユーザー好みの学習など、多くのアプリケーション領域において重要な課題である。
自然言語はこの目的のために強力な媒体であるが、大規模言語モデル(LLM)と既存の微調整アルゴリズムには、潜在エンティティに対する自身の理解を深めるために戦略的に情報を収集するメカニズムが欠けている。
有効な情報収集戦略の開発において, LLMの一般化力と世界知識を活用するために, 潜伏実体の不確かさを積極的に軽減する適応型エリケーションフレームワークを提案する。
抽象潜在エンティティの確率論的モデリングは困難であるため,メタ学習型言語モデルを用いて,将来的な観測をシミュレートし,複雑な自然言語上でのスケーラブルな不確実性定量化を実現することにより,不確実性に関する予測的視点を採用する。
自己回帰フォワードシミュレーションにより,新しい質問が疫学的不確実性を減らし,より洗練された情報収集戦略が開発され,最も有益な次のクエリを選択することができる。
20の質問ゲーム, 動的世論調査, 適応的学生評価実験において, 本手法は, 重要未知を識別し, 下流予測を改善し, 自然言語設定における戦略的情報収集の可能性を示唆した。
関連論文リスト
- Active Inference for Self-Organizing Multi-LLM Systems: A Bayesian Thermodynamic Approach to Adaptation [0.0]
本稿では,大規模言語モデル(LLM)とアクティブ推論を統合し,適応型言語エージェントを作成するための新しいアプローチを提案する。
本フレームワークは,3つの状態要因(確率,探索,情報状態)を用いて環境をモデル化する。
実験により、エージェントが環境力学の正確なモデルを開発することにより、このアプローチの有効性が示された。
論文 参考訳(メタデータ) (2024-12-10T16:34:47Z) - LLMs for Generalizable Language-Conditioned Policy Learning under Minimal Data Requirements [50.544186914115045]
本稿では,オフライン言語によるポリシー学習のための新しいトレーニングパイプラインTEDUOを提案する。
TEDUOは、分かりやすい、ラベルなしのデータセットを運用し、いわゆるインザワイルド評価(in-the-wild evaluation)に適している。
論文 参考訳(メタデータ) (2024-12-09T18:43:56Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - Probing the Decision Boundaries of In-context Learning in Large Language Models [31.977886254197138]
本稿では,テキスト内二項分類のための決定境界のレンズからテキスト内学習を探索し,理解するための新しいメカニズムを提案する。
驚いたことに、単純な二項分類タスクにおいて、現在のLLMによって学習される決定境界は、しばしば不規則で非滑らかである。
論文 参考訳(メタデータ) (2024-06-17T06:00:24Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks [0.6282171844772422]
大規模言語モデル(LLM)におけるパラメトリックドメイン知識の深化は、現実世界のアプリケーションへの迅速な展開を加速させている。
近年、自然言語処理タスクの逆例として命名されたエンティティが発見され、事前訓練されたLLMの知識の堅牢性に対するそれらの潜在的な影響に関する疑問が提起されている。
バイオメディカル知識のロバスト性を評価するために,パワースケール距離重み付きサンプリングに基づく埋め込み空間攻撃を開発した。
論文 参考訳(メタデータ) (2024-02-16T09:29:38Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation [3.2340528215722553]
連続的なニューラル情報検索の系統的なタスク定式化を示す。
包括的連続神経情報検索フレームワークを提案する。
経験的評価は,提案フレームワークが神経情報検索における破滅的な忘れ込みを効果的に防止できることを示唆している。
論文 参考訳(メタデータ) (2023-08-16T14:01:25Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。