Autoregressive High-Order Finite Difference Modulo Imaging: High-Dynamic Range for Computer Vision Applications
- URL: http://arxiv.org/abs/2504.04228v1
- Date: Sat, 05 Apr 2025 16:41:15 GMT
- Title: Autoregressive High-Order Finite Difference Modulo Imaging: High-Dynamic Range for Computer Vision Applications
- Authors: Brayan Monroy, Kebin Contreras, Jorge Bacca,
- Abstract summary: High dynamic range (gressive) imaging is vital for capturing the full range of light tones in scenes, essential for computer vision tasks such as autonomous driving.<n>Standard commercial imaging systems face limitations in capacity for well depth, and quantization precision, hindering their HDR capabilities.<n>We develop a modulo analog-to-digital approach that resets signals upon saturation, enabling estimation of pixel resets through neighboring pixel intensities.
- Score: 3.4956406636452626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High dynamic range (HDR) imaging is vital for capturing the full range of light tones in scenes, essential for computer vision tasks such as autonomous driving. Standard commercial imaging systems face limitations in capacity for well depth, and quantization precision, hindering their HDR capabilities. Modulo imaging, based on unlimited sampling (US) theory, addresses these limitations by using a modulo analog-to-digital approach that resets signals upon saturation, enabling estimation of pixel resets through neighboring pixel intensities. Despite the effectiveness of (US) algorithms in one-dimensional signals, their optimization problem for two-dimensional signals remains unclear. This work formulates the US framework as an autoregressive $\ell_2$ phase unwrapping problem, providing computationally efficient solutions in the discrete cosine domain jointly with a stride removal algorithm also based on spatial differences. By leveraging higher-order finite differences for two-dimensional images, our approach enhances HDR image reconstruction from modulo images, demonstrating its efficacy in improving object detection in autonomous driving scenes without retraining.
Related papers
- High Dynamic Range Modulo Imaging for Robust Object Detection in Autonomous Driving [3.4956406636452626]
This work introduces the use of modulo sensors for robust object detection in autonomous vehicles.
Experiments with the YOLOv10 model demonstrate that modulo images achieve performance comparable to HDR images.
The proposed modulo imaging step combined with HDR image reconstruction is shorter than the time required for conventional HDR image acquisition.
arXiv Detail & Related papers (2025-04-11T21:35:26Z) - Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling [50.34513854725803]
Arbitrary-scale super-resolution (ASSR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs with arbitrary upsampling factors.
We propose a novel ContinuousSR framework with a Pixel-to-Gaussian paradigm, which explicitly reconstructs 2D continuous HR signals from LR images using Gaussian Splatting.
arXiv Detail & Related papers (2025-03-09T13:43:57Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
We propose a deep progressive feature aggregation network for improving HDR imaging quality in dynamic scenes.
Our method implicitly samples high-correspondence features and aggregates them in a coarse-to-fine manner for alignment.
Experiments show that our proposed method can achieve state-of-the-art performance under different scenes.
arXiv Detail & Related papers (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
We propose a lightweight two-stage image enhancement algorithm sequentially balancing illumination and noise removal.
We also propose a Fourier spectrum-based adversarial framework (AFNet) for consistent image enhancement under varying illumination conditions.
Based on quantitative and qualitative evaluations, we also examine the practicality and effects of image enhancement techniques on the performance of common perception tasks.
arXiv Detail & Related papers (2022-04-04T18:48:51Z) - MantissaCam: Learning Snapshot High-dynamic-range Imaging with
Perceptually-based In-pixel Irradiance Encoding [39.78877654934457]
High-dynamic-range ( HDR) images are crucial in many computer vision applications.
Here, we design a neural network-based algorithm that outperforms previous irradiance unwrapping methods.
We show preliminary results of a prototype MantissaCam implemented with a programmable sensor.
arXiv Detail & Related papers (2021-12-09T21:32:10Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
We propose a novel learning-based approach using a spatially dynamic encoder-decoder network, HDRUNet, to learn an end-to-end mapping for single image HDR reconstruction.
Our method achieves the state-of-the-art performance in quantitative comparisons and visual quality.
arXiv Detail & Related papers (2021-05-27T12:12:34Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.