High Dynamic Range Modulo Imaging for Robust Object Detection in Autonomous Driving
- URL: http://arxiv.org/abs/2504.11472v1
- Date: Fri, 11 Apr 2025 21:35:26 GMT
- Title: High Dynamic Range Modulo Imaging for Robust Object Detection in Autonomous Driving
- Authors: Kebin Contreras, Brayan Monroy, Jorge Bacca,
- Abstract summary: This work introduces the use of modulo sensors for robust object detection in autonomous vehicles.<n>Experiments with the YOLOv10 model demonstrate that modulo images achieve performance comparable to HDR images.<n>The proposed modulo imaging step combined with HDR image reconstruction is shorter than the time required for conventional HDR image acquisition.
- Score: 3.4956406636452626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection precision is crucial for ensuring the safety and efficacy of autonomous driving systems. The quality of acquired images directly influences the ability of autonomous driving systems to correctly recognize and respond to other vehicles, pedestrians, and obstacles in real-time. However, real environments present extreme variations in lighting, causing saturation problems and resulting in the loss of crucial details for detection. Traditionally, High Dynamic Range (HDR) images have been preferred for their ability to capture a broad spectrum of light intensities, but the need for multiple captures to construct HDR images is inefficient for real-time applications in autonomous vehicles. To address these issues, this work introduces the use of modulo sensors for robust object detection. The modulo sensor allows pixels to `reset/wrap' upon reaching saturation level by acquiring an irradiance encoding image which can then be recovered using unwrapping algorithms. The applied reconstruction techniques enable HDR recovery of color intensity and image details, ensuring better visual quality even under extreme lighting conditions at the cost of extra time. Experiments with the YOLOv10 model demonstrate that images processed using modulo images achieve performance comparable to HDR images and significantly surpass saturated images in terms of object detection accuracy. Moreover, the proposed modulo imaging step combined with HDR image reconstruction is shorter than the time required for conventional HDR image acquisition.
Related papers
- Autoregressive High-Order Finite Difference Modulo Imaging: High-Dynamic Range for Computer Vision Applications [3.4956406636452626]
High dynamic range (gressive) imaging is vital for capturing the full range of light tones in scenes, essential for computer vision tasks such as autonomous driving.<n>Standard commercial imaging systems face limitations in capacity for well depth, and quantization precision, hindering their HDR capabilities.<n>We develop a modulo analog-to-digital approach that resets signals upon saturation, enabling estimation of pixel resets through neighboring pixel intensities.
arXiv Detail & Related papers (2025-04-05T16:41:15Z) - HDRT: A Large-Scale Dataset for Infrared-Guided HDR Imaging [8.208995723545502]
We introduce the first comprehensive dataset that consists of HDR and thermal IR images.<n>The HDRT dataset comprises 50,000 images captured across three seasons over six months in eight cities.<n>We propose HDRTNet, a novel deep neural method that fuses IR and SDR content to generate HDR images.
arXiv Detail & Related papers (2024-06-08T13:43:44Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - Single Image LDR to HDR Conversion using Conditional Diffusion [18.466814193413487]
Digital imaging aims to replicate realistic scenes, but Low Dynamic Range (LDR) cameras cannot represent the wide dynamic range of real scenes.
This paper presents a deep learning-based approach for recovering intricate details from shadows and highlights.
We incorporate a deep-based autoencoder in our proposed framework to enhance the quality of the latent representation of LDR image used for conditioning.
arXiv Detail & Related papers (2023-07-06T07:19:47Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
We propose a deep progressive feature aggregation network for improving HDR imaging quality in dynamic scenes.
Our method implicitly samples high-correspondence features and aggregates them in a coarse-to-fine manner for alignment.
Experiments show that our proposed method can achieve state-of-the-art performance under different scenes.
arXiv Detail & Related papers (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Thermal Image Processing via Physics-Inspired Deep Networks [21.094006629684376]
DeepIR combines physically accurate sensor modeling with deep network-based image representation.
DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target.
Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images.
arXiv Detail & Related papers (2021-08-18T04:57:48Z) - Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array [14.5106375775521]
We introduce the idea of luminance normalization that simultaneously enables effective loss and input data normalization.
Experimental results using two public HDR image datasets demonstrate that our framework outperforms other snapshot methods.
arXiv Detail & Related papers (2020-11-20T06:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.