Extending Cox Proportional Hazards Model with Symbolic Non-Linear Log-Risk Functions for Survival Analysis
- URL: http://arxiv.org/abs/2504.04353v2
- Date: Fri, 25 Apr 2025 00:53:08 GMT
- Title: Extending Cox Proportional Hazards Model with Symbolic Non-Linear Log-Risk Functions for Survival Analysis
- Authors: Jiaxiang Cheng, Guoqiang Hu,
- Abstract summary: We introduce Generalized Cox Proportional Hazards (GCPH) model, a novel method for survival analysis.<n>GCPH maintains the interpretability of traditional CPH models while allowing for the estimation of non-linear log-risk functions.
- Score: 4.872570541276082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Cox proportional hazards (CPH) model has been widely applied in survival analysis to estimate relative risks across different subjects given multiple covariates. Traditional CPH models rely on a linear combination of covariates weighted with coefficients as the log-risk function, which imposes a strong and restrictive assumption, limiting generalization. Recent deep learning methods enable non-linear log-risk functions. However, they often lack interpretability due to the end-to-end training mechanisms. The implementation of Kolmogorov-Arnold Networks (KAN) offers new possibilities for extending the CPH model with fully transparent and symbolic non-linear log-risk functions. In this paper, we introduce Generalized Cox Proportional Hazards (GCPH) model, a novel method for survival analysis that leverages KAN to enable a non-linear mapping from covariates to survival outcomes in a fully symbolic manner. GCPH maintains the interpretability of traditional CPH models while allowing for the estimation of non-linear log-risk functions. Experiments conducted on both synthetic data and various public benchmarks demonstrate that GCPH achieves competitive performance in terms of prediction accuracy and exhibits superior interpretability compared to current state-of-the-art methods.
Related papers
- HACSurv: A Hierarchical Copula-Based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
We introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures.<n>By capturing the dependencies between risks and censoring, HACSurv improves the accuracy of survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - OPSurv: Orthogonal Polynomials Quadrature Algorithm for Survival
Analysis [19.65859820376036]
This paper introduces the Orthogonal Polynomials Quadrature Algorithm for Survival Analysis (OPSurv)
OPSurv provides time-continuous functional outputs for both single and competing risks scenarios in survival analysis.
arXiv Detail & Related papers (2024-02-02T23:26:09Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice.
This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization algorithm.
arXiv Detail & Related papers (2023-09-15T22:06:29Z) - Variable selection for nonlinear Cox regression model via deep learning [0.0]
We extend the recently developed deep learning-based variable selection model LassoNet to survival data.
We apply the proposed methodology to analyze a real data set on diffuse large B-cell lymphoma.
arXiv Detail & Related papers (2022-11-17T01:17:54Z) - Factor-Augmented Regularized Model for Hazard Regression [1.8021287677546953]
We propose a new model, Factor-Augmented Regularized Model for Hazard Regression (FarmHazard), to perform model selection in high-dimensional data.
We prove model selection consistency and estimation consistency under mild conditions.
We also develop a factor-augmented variable screening procedure to deal with strong correlations in ultra-high dimensional problems.
arXiv Detail & Related papers (2022-10-03T16:35:33Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
We propose FastCPH, a new method that runs in linear time and supports both the standard Breslow and Efron methods for tied events.
We also demonstrate the performance of FastCPH combined with LassoNet, a neural network that provides interpretability through feature sparsity.
arXiv Detail & Related papers (2022-08-21T03:35:29Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.