論文の概要: Formula-Supervised Sound Event Detection: Pre-Training Without Real Data
- arxiv url: http://arxiv.org/abs/2504.04428v1
- Date: Sun, 06 Apr 2025 09:47:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:07.010028
- Title: Formula-Supervised Sound Event Detection: Pre-Training Without Real Data
- Title(参考訳): フォーミュラ・スーパービジョン音響イベント検出:実データのない事前学習
- Authors: Yuto Shibata, Keitaro Tanaka, Yoshiaki Bando, Keisuke Imoto, Hirokatsu Kataoka, Yoshimitsu Aoki,
- Abstract要約: 本研究では,環境音解析モデルの事前学習のための新しい定式駆動型教師あり学習(F)フレームワークを提案する。
具体的には、詳細な手順を概説し、音響事象検出(SED)の有効性を評価する。
フォーミュラ-SEDを用いた大規模事前学習はモデルの精度を大幅に向上させ,訓練を加速させることを示した。
- 参考スコア(独自算出の注目度): 18.860251552914367
- License:
- Abstract: In this paper, we propose a novel formula-driven supervised learning (FDSL) framework for pre-training an environmental sound analysis model by leveraging acoustic signals parametrically synthesized through formula-driven methods. Specifically, we outline detailed procedures and evaluate their effectiveness for sound event detection (SED). The SED task, which involves estimating the types and timings of sound events, is particularly challenged by the difficulty of acquiring a sufficient quantity of accurately labeled training data. Moreover, it is well known that manually annotated labels often contain noises and are significantly influenced by the subjective judgment of annotators. To address these challenges, we propose a novel pre-training method that utilizes a synthetic dataset, Formula-SED, where acoustic data are generated solely based on mathematical formulas. The proposed method enables large-scale pre-training by using the synthesis parameters applied at each time step as ground truth labels, thereby eliminating label noise and bias. We demonstrate that large-scale pre-training with Formula-SED significantly enhances model accuracy and accelerates training, as evidenced by our results in the DESED dataset used for DCASE2023 Challenge Task 4. The project page is at https://yutoshibata07.github.io/Formula-SED/
- Abstract(参考訳): 本稿では, 定式化法によりパラメトリックに合成された音響信号を活用することで, 環境音解析モデルの事前学習を行うための, 式駆動型教師あり学習(FDSL)フレームワークを提案する。
具体的には、詳細な手順を概説し、音響事象検出(SED)の有効性を評価する。
音響イベントのタイプやタイミングを推定するSEDタスクは,精度の高いラベル付きトレーニングデータの取得が困難なため,特に課題となる。
また,手動でアノテートしたラベルにはノイズが伴うことが多く,アノテータの主観的判断の影響も大きいことが知られている。
これらの課題に対処するために,数式のみに基づいて音響データを生成可能な合成データセットであるF-SEDを利用する,新しい事前学習手法を提案する。
提案手法は,各時間ステップで適用された合成パラメータを基底真理ラベルとして使用することにより,ラベルノイズやバイアスを排除し,大規模事前学習を可能にする。
DCASE2023 Challenge Task 4で使用したDESEDデータセットでは,F-SEDによる大規模事前学習がモデル精度を大幅に向上し,トレーニングの高速化を図っている。
プロジェクトページはhttps://yutoshibata07.github.io/Formula-SED/にある。
関連論文リスト
- Early Stopping Against Label Noise Without Validation Data [54.27621957395026]
所望のモデルを選択するのに検証データを必要としないラベルウェーブと呼ばれる新しい早期停止手法を提案する。
各種設定におけるラベルウェーブ法の有効性と,ノイズラベルを用いた学習における既存手法の性能向上を両立させる能力について述べる。
論文 参考訳(メタデータ) (2025-02-11T13:40:15Z) - Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
我々はtextbfSelf-adaptivtextbfE とクラスバランスtextbfD 方式でラベルノイズに対処するための textbfSED という新しい手法を提案する。
平均教師モデルは、ノイズの多いサンプルのラベルを修正するために使用される。
また,検出した雑音に異なる重みを割り当てる自己適応型およびクラスバランスのサンプル再重み付け機構を提案する。
論文 参考訳(メタデータ) (2024-07-03T03:10:24Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation [16.283722126438125]
ラベルノイズ学習(LNL)は、クリーンでノイズの多いラベルサンプルを区別するためにサンプル選択段階を組み込む。
このようなカリキュラムは、トレーニングセットの実際のラベルノイズ率を考慮していないため、準最適である。
本稿では,ほとんどのSOTA (State-of-the-art) LNL法と容易に統合できる新しいノイズレート推定法を用いて,この問題に対処する。
論文 参考訳(メタデータ) (2023-05-31T01:46:14Z) - Learning from Training Dynamics: Identifying Mislabeled Data Beyond
Manually Designed Features [43.41573458276422]
LSTMネットワークを例として,ノイズ検出を応用した新しい学習ベースソリューションを提案する。
提案手法は、合成ラベル雑音を用いたデータセットを用いて、教師あり方式でノイズ検出器を訓練する。
提案手法は, 各種データセットの誤ラベルサンプルを, さらなる適応を伴わずに, 精度良く検出できることが示唆された。
論文 参考訳(メタデータ) (2022-12-19T09:39:30Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Device-Directed Speech Detection: Regularization via Distillation for
Weakly-Supervised Models [13.456066434598155]
我々は、特定のウェイクワードを含まないデバイスに向けられた音声を検出する問題に対処する。
具体的には、タッチベースの呼び出しによるオーディオに焦点を当てます。
論文 参考訳(メタデータ) (2022-03-30T01:27:39Z) - Active Learning for Sound Event Detection [18.750572243562576]
本稿では,音事象検出(SED)のための能動的学習システムを提案する。
本研究の目的は,学習したSEDモデルの精度を限定的なアノテーションで最大化することである。
注目すべきは、ターゲット音イベントが稀なデータセットにおいて、必要なアノテーションの労力を大幅に削減できることだ。
論文 参考訳(メタデータ) (2020-02-12T14:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。