論文の概要: Evaluation framework for Image Segmentation Algorithms
- arxiv url: http://arxiv.org/abs/2504.04435v1
- Date: Sun, 06 Apr 2025 10:20:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 01:40:35.554962
- Title: Evaluation framework for Image Segmentation Algorithms
- Title(参考訳): 画像分割アルゴリズムの評価フレームワーク
- Authors: Tatiana Merkulova, Bharani Jayakumar,
- Abstract要約: 本稿では,画像セグメンテーションの基本概念と重要性と,精度向上における対話的セグメンテーションの役割を紹介する。
詳細な背景理論セクションでは、しきい値、エッジ検出、領域の成長、特徴抽出、ランダムフォレスト、サポートベクターマシン、畳み込みニューラルネットワーク、U-Net、Mask R-CNNなど、さまざまなセグメンテーション手法が検討されている。
比較分析では、それぞれの手法の強み、限界、トレードオフを強調し、詳細な結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive evaluation framework for image segmentation algorithms, encompassing naive methods, machine learning approaches, and deep learning techniques. We begin by introducing the fundamental concepts and importance of image segmentation, and the role of interactive segmentation in enhancing accuracy. A detailed background theory section explores various segmentation methods, including thresholding, edge detection, region growing, feature extraction, random forests, support vector machines, convolutional neural networks, U-Net, and Mask R-CNN. The implementation and experimental setup are thoroughly described, highlighting three primary approaches: algorithm assisting user, user assisting algorithm, and hybrid methods. Evaluation metrics such as Intersection over Union (IoU), computation time, and user interaction time are employed to measure performance. A comparative analysis presents detailed results, emphasizing the strengths, limitations, and trade-offs of each method. The paper concludes with insights into the practical applicability of these approaches across various scenarios and outlines future work, focusing on expanding datasets, developing more representative approaches, integrating real-time feedback, and exploring weakly supervised and self-supervised learning paradigms to enhance segmentation accuracy and efficiency. Keywords: Image Segmentation, Interactive Segmentation, Machine Learning, Deep Learning, Computer Vision
- Abstract(参考訳): 本稿では,ナイーブな手法,機械学習アプローチ,深層学習技術を含む画像分割アルゴリズムの総合評価フレームワークを提案する。
まず,画像セグメンテーションの基本概念と重要性,および精度向上における対話的セグメンテーションの役割を紹介する。
詳細な背景理論セクションでは、しきい値、エッジ検出、領域の成長、特徴抽出、ランダムフォレスト、サポートベクターマシン、畳み込みニューラルネットワーク、U-Net、Mask R-CNNなど、さまざまなセグメンテーション手法が検討されている。
ユーザ支援アルゴリズム,ユーザ支援アルゴリズム,ハイブリッドメソッドの3つの主要なアプローチが紹介されている。
IoU(Intersection over Union)、計算時間、ユーザインタラクション時間などの評価指標を使用してパフォーマンスを測定する。
比較分析では、それぞれの手法の強み、限界、トレードオフを強調し、詳細な結果を示す。
本論文は,これらのアプローチの実践的適用性について,さまざまなシナリオにわたって考察し,データセットの拡張,より代表的なアプローチの開発,リアルタイムフィードバックの統合,セグメンテーションの精度と効率を高めるための弱教師付き自己教師型学習パラダイムの探求など,今後の課題を概説する。
キーワード:イメージセグメンテーション、インタラクティブセグメンテーション、機械学習、ディープラーニング、コンピュータビジョン
関連論文リスト
- A Deep Learning Framework for Boundary-Aware Semantic Segmentation [9.680285420002516]
本研究では境界拡張機能ブリッジングモジュール(BEFBM)を用いたMask2Formerに基づくセマンティックセマンティックセマンティクスアルゴリズムを提案する。
提案手法は,mIOU,mDICE,mRecallなどのメトリクスを大幅に改善する。
ビジュアル分析は、きめ細かい領域におけるモデルの利点を裏付ける。
論文 参考訳(メタデータ) (2025-03-28T00:00:08Z) - Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
本稿では,サンプル選択戦略の再考と改善に焦点をあてる。
まず、ICLに基づくセグメンテーションモデルが異なる文脈に敏感であることを示す。
さらに、経験的証拠は、文脈的プロンプトの多様性がセグメンテーションを導く上で重要な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-07-14T15:02:54Z) - LiSD: An Efficient Multi-Task Learning Framework for LiDAR Segmentation and Detection [6.813145466843275]
LiSDはボクセルベースのエンコーダデコーダフレームワークで、セグメンテーションと検出の両方のタスクに対処する。
これは、ライダーのみの手法のnuScenesセグメンテーションベンチマークにおいて、83.3% mIoUの最先端性能を達成する。
論文 参考訳(メタデータ) (2024-06-11T07:26:54Z) - Scalable Multi-view Clustering via Explicit Kernel Features Maps [20.610589722626074]
マルチビュー学習に対する意識の高まりは、現実世界のアプリケーションにおける複数のビューの増加によるものだ。
優れたクラスタリング性能を維持しつつ,計算負担を軽減するため,カーネル特徴マップを活用した効率的な最適化手法を提案する。
我々は,最先端のマルチビューサブスペースクラスタリング手法や属性ネットワークのマルチビューアプローチに対して,アルゴリズムの性能を評価するために,様々な規模の実世界のベンチマークネットワーク上で広範囲に実験を行った。
論文 参考訳(メタデータ) (2024-02-07T12:35:31Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - A Survey on Deep Learning Methods for Semantic Image Segmentation in
Real-Time [0.0]
ロボット工学や自動運転車など、多くの分野において、セマンティックイメージのセグメンテーションが不可欠である。
診断と治療の成功は、検討中のデータの極めて正確な理解に依存している。
近年のディープラーニングの進歩は、この問題に効果的かつ高精度に対処するためのツールを多数提供してきた。
論文 参考訳(メタデータ) (2020-09-27T20:30:10Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。