Squeeze and Excitation: A Weighted Graph Contrastive Learning for Collaborative Filtering
- URL: http://arxiv.org/abs/2504.04443v1
- Date: Sun, 06 Apr 2025 11:30:59 GMT
- Title: Squeeze and Excitation: A Weighted Graph Contrastive Learning for Collaborative Filtering
- Authors: Zheyu Chen, Jinfeng Xu, Yutong Wei, Ziyue Peng,
- Abstract summary: Graph contrastive learning (GCL) aims to enhance the robustness of representation learning.<n>Weighted Graph Contrastive Learning framework (WeightedGCL) addresses the irrational allocation of feature attention.<n>WeightedGCL achieves significant accuracy improvements compared to competitive baselines.
- Score: 1.3535213052193866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive Learning (CL) has recently emerged as a powerful technique in recommendation systems, particularly for its capability to harness self-supervised signals from perturbed views to mitigate the persistent challenge of data sparsity. The process of constructing perturbed views of the user-item bipartite graph and performing contrastive learning between perturbed views in a graph convolutional network (GCN) is called graph contrastive learning (GCL), which aims to enhance the robustness of representation learning. Although existing GCL-based models are effective, the weight assignment method for perturbed views has not been fully explored. A critical problem in existing GCL-based models is the irrational allocation of feature attention. This problem limits the model's ability to effectively leverage crucial features, resulting in suboptimal performance. To address this, we propose a Weighted Graph Contrastive Learning framework (WeightedGCL). Specifically, WeightedGCL applies a robust perturbation strategy, which perturbs only the view of the final GCN layer. In addition, WeightedGCL incorporates a squeeze and excitation network (SENet) to dynamically weight the features of the perturbed views. Our WeightedGCL strengthens the model's focus on crucial features and reduces the impact of less relevant information. Extensive experiments on widely used datasets demonstrate that our WeightedGCL achieves significant accuracy improvements compared to competitive baselines.
Related papers
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Dual Adversarial Perturbators Generate rich Views for Recommendation [16.284670207195056]
AvoGCL emulates curriculum learning by applying adversarial training to graph structures and embedding perturbations.
Experiments on three real-world datasets demonstrate that AvoGCL significantly outperforms the state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-26T15:19:35Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
Graph Neural Networks (GNNs) are powerful learning methods for recommender systems.
Recently, the integration of contrastive learning with GNNs has demonstrated remarkable performance in recommender systems.
This study proposes a latent factor analysis (LFA) enhanced GCL approach, named LFA-GCL.
arXiv Detail & Related papers (2024-08-09T03:24:48Z) - Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning [25.514007761856632]
graph contrastive learning (GCL) has received increasing attention in recommender systems due to its effectiveness in reducing bias caused by data sparsity.
We argue that these methods struggle to balance between semantic invariance and view hardness across the dynamic training process.
We propose a novel GCL-based recommendation framework RGCL, which effectively maintains the semantic invariance of contrastive pairs and dynamically adapts as the model capability evolves.
arXiv Detail & Related papers (2024-07-14T13:03:35Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
We introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of Graph Contrastive Learning (GCL) methods.
arXiv Detail & Related papers (2024-02-24T01:47:56Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Rethinking and Simplifying Bootstrapped Graph Latents [48.76934123429186]
Graph contrastive learning (GCL) has emerged as a representative paradigm in graph self-supervised learning.
We present SGCL, a simple yet effective GCL framework that utilizes the outputs from two consecutive iterations as positive pairs.
We show that SGCL can achieve competitive performance with fewer parameters, lower time and space costs, and significant convergence speedup.
arXiv Detail & Related papers (2023-12-05T09:49:50Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
We present a self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short)
Our algorithm builds flexible contextual representations with contextual scopes by controlling the power of an adjacency matrix.
Based on representations from both local and contextual scopes, distL optimises a very simple contrastive loss function for graph representation learning.
arXiv Detail & Related papers (2022-10-17T07:16:17Z) - An Empirical Study of Graph Contrastive Learning [17.246488437677616]
Graph Contrastive Learning establishes a new paradigm for learning graph representations without human annotations.
We identify several critical design considerations within a general GCL paradigm, including augmentation functions, contrasting modes, contrastive objectives, and negative mining techniques.
To foster future research and ease the implementation of GCL algorithms, we develop an easy-to-use library PyGCL, featuring modularized CL components, standardized evaluation, and experiment management.
arXiv Detail & Related papers (2021-09-02T17:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.