Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation
- URL: http://arxiv.org/abs/2408.04838v1
- Date: Fri, 9 Aug 2024 03:24:48 GMT
- Title: Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation
- Authors: Junfeng Long, Hao Wu,
- Abstract summary: Graph Neural Networks (GNNs) are powerful learning methods for recommender systems.
Recently, the integration of contrastive learning with GNNs has demonstrated remarkable performance in recommender systems.
This study proposes a latent factor analysis (LFA) enhanced GCL approach, named LFA-GCL.
- Score: 2.9449497738046078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are powerful learning methods for recommender systems owing to their robustness in handling complicated user-item interactions. Recently, the integration of contrastive learning with GNNs has demonstrated remarkable performance in recommender systems to handle the issue of highly sparse user-item interaction data. Yet, some available graph contrastive learning (GCL) techniques employ stochastic augmentation, i.e., nodes or edges are randomly perturbed on the user-item bipartite graph to construct contrastive views. Such a stochastic augmentation strategy not only brings noise perturbation but also cannot utilize global collaborative signals effectively. To address it, this study proposes a latent factor analysis (LFA) enhanced GCL approach, named LFA-GCL. Our model exclusively incorporates LFA to implement the unconstrained structural refinement, thereby obtaining an augmented global collaborative graph accurately without introducing noise signals. Experiments on four public datasets show that the proposed LFA-GCL outperforms the state-of-the-art models.
Related papers
- L^2CL: Embarrassingly Simple Layer-to-Layer Contrastive Learning for Graph Collaborative Filtering [33.165094795515785]
Graph neural networks (GNNs) have recently emerged as an effective approach to model neighborhood signals in collaborative filtering.
We propose L2CL, a principled Layer-to-Layer Contrastive Learning framework that contrasts representations from different layers.
We find that L2CL, using only one-hop contrastive learning paradigm, is able to capture intrinsic semantic structures and improve the quality of node representation.
arXiv Detail & Related papers (2024-07-19T12:45:21Z) - Rethinking and Simplifying Bootstrapped Graph Latents [48.76934123429186]
Graph contrastive learning (GCL) has emerged as a representative paradigm in graph self-supervised learning.
We present SGCL, a simple yet effective GCL framework that utilizes the outputs from two consecutive iterations as positive pairs.
We show that SGCL can achieve competitive performance with fewer parameters, lower time and space costs, and significant convergence speedup.
arXiv Detail & Related papers (2023-12-05T09:49:50Z) - Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals [2.4305626489408465]
We introduce Kernel-based joint Multiple GL and clustering of graph signals applications.
Experiments demonstrate that KMGL significantly enhances the robustness of GL clustering, particularly in scenarios with high noise levels.
These findings underscore the potential of KMGL for improving the performance of Graph Signal Processing methods in diverse real-world applications.
arXiv Detail & Related papers (2023-10-29T13:41:12Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-05T09:05:14Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
We propose Learnable Data Augmentation for Graph Contrastive Learning (LDA-GCL)
Our methods include data augmentation learning and graph contrastive learning, which follow the InfoMin and InfoMax principles, respectively.
In implementation, our methods optimize the adversarial loss function to learn data augmentation and effective representations of users and items.
arXiv Detail & Related papers (2023-02-05T06:55:51Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Adversarial Graph Augmentation to Improve Graph Contrastive Learning [21.54343383921459]
We propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training.
We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings.
arXiv Detail & Related papers (2021-06-10T15:34:26Z) - Self-supervised Graph Learning for Recommendation [69.98671289138694]
We explore self-supervised learning on user-item graph for recommendation.
An auxiliary self-supervised task reinforces node representation learning via self-discrimination.
Empirical studies on three benchmark datasets demonstrate the effectiveness of SGL.
arXiv Detail & Related papers (2020-10-21T06:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.