Skin Color Measurement from Dermatoscopic Images: An Evaluation on a Synthetic Dataset
- URL: http://arxiv.org/abs/2504.04494v1
- Date: Sun, 06 Apr 2025 13:57:34 GMT
- Title: Skin Color Measurement from Dermatoscopic Images: An Evaluation on a Synthetic Dataset
- Authors: Marin Benčević, Robert Šojo, Irena Galić,
- Abstract summary: We assess four classes of image colorimetry approaches: segmentation-based, patch-based, color quantization, and neural networks.<n>Our results show that segmentation-based and color quantization methods yield robust, lighting-invariant estimates.<n>Neural network models, particularly when combined with heavy blurring to reduce overfitting, can provide light-invariant Fitzpatrick predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive evaluation of skin color measurement methods from dermatoscopic images using a synthetic dataset (S-SYNTH) with controlled ground-truth melanin content, lesion shapes, hair models, and 18 distinct lighting conditions. This allows for rigorous assessment of the robustness and invariance to lighting conditions. We assess four classes of image colorimetry approaches: segmentation-based, patch-based, color quantization, and neural networks. We use these methods to estimate the Individual Typology Angle (ITA) and Fitzpatrick types from dermatoscopic images. Our results show that segmentation-based and color quantization methods yield robust, lighting-invariant estimates, whereas patch-based approaches exhibit significant lighting-dependent biases that require calibration. Furthermore, neural network models, particularly when combined with heavy blurring to reduce overfitting, can provide light-invariant Fitzpatrick predictions, although their generalization to real-world images remains unverified. We conclude with practical recommendations for designing fair and reliable skin color estimation methods.
Related papers
- Leveraging Semantic Attribute Binding for Free-Lunch Color Control in Diffusion Models [53.73253164099701]
We introduce ColorWave, a training-free approach that achieves exact RGB-level color control in diffusion models without fine-tuning.<n>We demonstrate that ColorWave establishes a new paradigm for structured, color-consistent diffusion-based image synthesis.
arXiv Detail & Related papers (2025-03-12T21:49:52Z) - Colorimetric skin tone scale for improved accuracy and reduced perceptual bias of human skin tone annotations [0.0]
We develop a novel Colorimetric Skin Tone (CST) scale based on prior colorimetric measurements.
Using experiments requiring humans to rate their own skin tone and the skin tone of subjects in images, we show that the new CST scale is more sensitive, consistent, and colorimetrically accurate.
arXiv Detail & Related papers (2024-10-28T13:29:24Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
Saliency prediction models are constrained by the limited diversity and quantity of labeled data.
We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and variability of real-world scenes.
arXiv Detail & Related papers (2024-09-11T14:36:24Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - Revisiting Skin Tone Fairness in Dermatological Lesion Classification [3.247628857305427]
We review and compare four ITA-based approaches of skin tone classification on the ISIC18 dataset.
Our analyses reveal a high disagreement among previously published studies demonstrating the risks of ITA-based skin tone estimation methods.
We investigate the causes of such large discrepancy among these approaches and find that the lack of diversity in the ISIC18 dataset limits its use as a testbed for fairness analysis.
arXiv Detail & Related papers (2023-08-18T15:59:55Z) - Color Invariant Skin Segmentation [17.501659517108884]
This paper addresses the problem of automatically detecting human skin in images without reliance on color information.
A primary motivation of the work has been to achieve results that are consistent across the full range of skin tones.
We present a new approach that performs well in the absence of such information.
arXiv Detail & Related papers (2022-04-21T05:07:21Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
We present an automatic facial skin feature detection method that works across a variety of skin tones and age groups for selfies in the wild.
To be specific, we annotate the locations of acne, pigmentation, and wrinkle for selfie images with different skin tone colors, severity levels, and lighting conditions.
arXiv Detail & Related papers (2022-03-30T04:52:54Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
Skin lesions can be an early indicator of a wide range of infectious and other diseases.
The use of deep learning (DL) models to diagnose skin lesions has great potential in assisting clinicians with prescreening patients.
These models often learn biases inherent in training data, which can lead to a performance gap in the diagnosis of people with light and/or dark skin tones.
arXiv Detail & Related papers (2022-02-28T15:33:31Z) - Saliency-based segmentation of dermoscopic images using color
information [3.8073142980733]
This paper investigates how color information, besides saliency, can be used to determine the pigmented lesion region automatically.
We propose a novel method employing a binarization process coupled with new perceptual criteria, inspired by the human visual perception.
We have assessed the method on two public databases, including 1497 dermoscopic images.
arXiv Detail & Related papers (2020-11-26T08:47:10Z) - Monte Carlo Dropout Ensembles for Robust Illumination Estimation [94.14796147340041]
Computational color constancy is a preprocessing step used in many camera systems.
We propose to aggregate different deep learning methods according to their output uncertainty.
The proposed framework leads to state-of-the-art performance on INTEL-TAU dataset.
arXiv Detail & Related papers (2020-07-20T13:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.