論文の概要: ICCheck: A Portable, Language-Agnostic Tool for Synchronizing Code Clones
- arxiv url: http://arxiv.org/abs/2504.04537v1
- Date: Sun, 06 Apr 2025 16:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:53.413026
- Title: ICCheck: A Portable, Language-Agnostic Tool for Synchronizing Code Clones
- Title(参考訳): ICCheck: コードクローンを同期するためのポータブルで言語に依存しないツール
- Authors: Motoki Abe, Shinpei Hayashi,
- Abstract要約: コードクローンの一貫性のない変更は、ソフトウェアの欠陥につながる可能性がある。
ICCheckは言語に依存しない、様々な環境にまたがるポータブルなツールである。
- 参考スコア(独自算出の注目度): 1.313675711285772
- License:
- Abstract: Inconsistent modifications to code clones can lead to software defects. Many approaches exist to support consistent modifications based on clone detection and/or change pattern extraction. However, no tool currently supports synchronization of code clones across diverse programming languages and development environments. We propose ICCheck, a tool designed to be language-agnostic and portable across various environments. By leveraging an existing language-agnostic clone search technique and limiting the tool's external dependency to an existing Git repository, we developed a tool that can assist in synchronizing code clones in diverse environments. We validated the tool's functionality in multiple open-source repositories, demonstrating its language independence. Furthermore, by supporting the Language Server Protocol, we confirmed that ICCheck can be integrated into multiple development environments with minimal effort. ICCheck is available at https://github.com/salab/iccheck
- Abstract(参考訳): コードクローンの一貫性のない変更は、ソフトウェアの欠陥につながる可能性がある。
クローン検出および/または変更パターン抽出に基づく一貫した修正をサポートするために、多くのアプローチが存在する。
しかしながら、現時点では、さまざまなプログラミング言語や開発環境にわたるコードクローンの同期をサポートしていない。
ICCheckは言語に依存しない、様々な環境にまたがるポータブルなツールである。
既存の言語に依存しないクローン検索技術を活用し、ツールの既存のGitリポジトリへの外部依存を制限することで、さまざまな環境でコードクローンの同期を支援するツールを開発した。
ツールの機能を複数のオープンソースリポジトリで検証し、その言語独立性を実証しました。
さらに、Language Server Protocolのサポートにより、ICCheckを最小限の労力で複数の開発環境に統合できることを確認した。
ICCheckはhttps://github.com/salab/iccheckで入手できる。
関連論文リスト
- Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - Development and Benchmarking of Multilingual Code Clone Detector [2.253851493296371]
多言語コードクローン検出器は、ターゲット言語のみの構文情報を提供することで、新しい言語のサポートを追加しやすくする。
ANTLR生成に基づく多言語コードブロック抽出法を提案し、多言語コードクローン検出器(MSCCD)を実装した。
最先端の10の検出器と比較して、MSCCDは平均レベルで動作し、さらに多くの言語をサポートしている。
論文 参考訳(メタデータ) (2024-09-10T03:08:33Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - AdaCCD: Adaptive Semantic Contrasts Discovery Based Cross Lingual
Adaptation for Code Clone Detection [69.79627042058048]
AdaCCDは、その言語でアノテーションを使わずに、新しい言語のクローンコードを検出する新しい言語間適応手法である。
5つのプログラミング言語からなる多言語コードクローン検出ベンチマークを構築し,AdaCCDの言語間適応性を評価する。
論文 参考訳(メタデータ) (2023-11-13T12:20:48Z) - Guess & Sketch: Language Model Guided Transpilation [59.02147255276078]
学習されたトランスパイレーションは、手作業による書き直しやエンジニアリングの取り組みに代わるものだ。
確率的ニューラルネットワークモデル(LM)は、入力毎に可塑性出力を生成するが、正確性を保証するコストがかかる。
Guess & Sketch は LM の特徴からアライメントと信頼性情報を抽出し、意味的等価性を解決するためにシンボリック・ソルバに渡す。
論文 参考訳(メタデータ) (2023-09-25T15:42:18Z) - Unveiling the potential of large language models in generating semantic
and cross-language clones [8.791710193028905]
OpenAIのGPTモデルは、テキスト生成に使用されるGPTのようなクローン生成の可能性を秘めている。
セマンティッククローンの分野では、GPT-3の精度は62.14%と0.55 BLEUで、数発のプロンプトエンジニアリングによって達成されている。
論文 参考訳(メタデータ) (2023-09-12T17:40:49Z) - GPTCloneBench: A comprehensive benchmark of semantic clones and
cross-language clones using GPT-3 model and SemanticCloneBench [1.8687918300580921]
本稿では,SemanticCloneBenchとOpenAIのGPT-3モデルを利用して,包括的セマンティッククローンと言語間クローンベンチマークGPTCloneBenchを提案する。
GPT-3出力の79,928個のクローンペアから、37,149個の真のセマンティッククローンペア、19,288個の偽セマンティックペア(Type-1/Type-2)、および4言語(Java、C、C#、Python)にわたる20,770個のクロス言語クローンのベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-08-26T21:50:34Z) - ZC3: Zero-Shot Cross-Language Code Clone Detection [79.53514630357876]
ゼロショットクロスランゲージコードクローン検出のためのZC3という新しい手法を提案する。
ZC3は、異なるプログラミング言語間で同型表現空間を形成するために、対照的なスニペット予測を設計する。
これに基づいて、ZC3はドメイン認識学習とサイクル一貫性学習を利用して、異なる言語間で整合した表現を生成する。
論文 参考訳(メタデータ) (2023-08-26T03:48:10Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
標準的な強化学習環境として,インタラクティブコーディングの軽量でフレキシブルで使いやすいフレームワークであるInterCodeを紹介した。
私たちのフレームワークは、言語とプラットフォームに依存しない、自己完結型のDocker環境を使用して、安全で再現可能な実行を提供します。
我々は、異なるプロンプト戦略で構成された複数の最先端LLMを評価することにより、InterCodeの生存性をテストベッドとして示す。
論文 参考訳(メタデータ) (2023-06-26T17:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。