論文の概要: Exact Unlearning of Finetuning Data via Model Merging at Scale
- arxiv url: http://arxiv.org/abs/2504.04626v1
- Date: Sun, 06 Apr 2025 21:24:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:23.210058
- Title: Exact Unlearning of Finetuning Data via Model Merging at Scale
- Title(参考訳): スケールでのモデルマージによるファインタニングデータの厳密なアンラーニング
- Authors: Kevin Kuo, Amrith Setlur, Kartik Srinivas, Aditi Raghunathan, Virginia Smith,
- Abstract要約: モデルマージに基づく正確なアンラーニング手法であるSIFT-Masksを提案する。
最大500台のモデルをマージする4つの設定で、SIFT-Masksは単純なマージよりも精度を5~80%向上します。
- 参考スコア(独自算出の注目度): 27.352216338702565
- License:
- Abstract: Approximate unlearning has gained popularity as an approach to efficiently update an LLM so that it behaves (roughly) as if it was not trained on a subset of data to begin with. However, existing methods are brittle in practice and can easily be attacked to reveal supposedly unlearned information. To alleviate issues with approximate unlearning, we instead propose SIFT-Masks (SIgn-Fixed Tuning-Masks), an exact unlearning method based on model merging. SIFT-Masks addresses two key limitations of standard model merging: (1) merging a large number of tasks can severely harm utility; and (2) methods that boost utility by sharing extra information across tasks make exact unlearning prohibitively expensive. SIFT-Masks solves these issues by (1) applying local masks to recover task-specific performance; and (2) constraining finetuning to align with a global sign vector as a lightweight approach to determine masks independently before merging. Across four settings where we merge up to 500 models, SIFT-Masks improves accuracy by 5-80% over naive merging and uses up to 250x less compute for exact unlearning compared to other merging baselines.
- Abstract(参考訳): 近似アンラーニングは、LLMを効率的に更新して(大まかに)データサブセットでトレーニングされていないかのように振る舞うアプローチとして人気を集めている。
しかし、既存の手法は実際には脆弱であり、容易に攻撃して未学習の情報を明らかにすることができる。
近似的アンラーニングの問題を軽減するために、モデルマージに基づく正確なアンラーニング手法であるSIFT-Masks(SIgn-Fixed Tuning-Masks)を提案する。
SIFT-Masksは,(1)多数のタスクをマージすることで実用性を著しく損なう可能性があり,(2)タスク間で余分な情報を共有することによって実用性を高める手法は,非学習を違法に高価にする。
SIFT-Masksは,(1)タスク固有のパフォーマンスを回復するために局所マスクを適用すること,(2)グローバルサインベクトルとの整合を制約すること,および(2)マージ前のマスクを独立に決定するための軽量なアプローチである。
最大500モデルにマージする4つの設定の中で、SIFT-Masksは、単純なマージよりも精度を5~80%向上し、マージベースラインに比べて、正確なアンラーニングに最大250倍少ない計算を使用する。
関連論文リスト
- Multi-Objective Large Language Model Unlearning [3.372396620898397]
グラディエント・アセント(GA)は、対象データ上のモデルの予測確率を減少させるプロアクティブな方法である。
本稿では,多目的大規模言語モデル学習(MOLLM)アルゴリズムを提案する。
実験の結果,MLLM が SOTA GA をベースとした LLM アンラーニング法よりも非ラーニング効果とモデルユーティリティ保存の点で優れていたことが確認された。
論文 参考訳(メタデータ) (2024-12-29T09:35:56Z) - MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models [87.64417894918506]
この研究は、大規模言語モデルにおける半構造化(あるいはN:M'')のスパーシティを確立する学習可能なプルーニング手法であるMaskLLMを紹介した。
MaskLLMはGumbel Softmaxサンプリングを通じて学習可能な分布としてN:Mパターンを明示的にモデル化する。
論文 参考訳(メタデータ) (2024-09-26T02:37:41Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
我々は、トランスファーラーニング、メタラーニング、コントラストラーニングを、参照機械学習(ML)ツリーベースおよびモノリシックDLモデルと比較する。
i) 大規模なデータセットを用いて,より一般的な表現を得られること,(ii) コントラスト学習が最良の手法であることを示している。
MLツリーベースでは大きなタスクは処理できないが、学習した表現を再利用することで、小さなタスクにも適合するが、DLメソッドはツリーベースモデルのパフォーマンスにも到達している。
論文 参考訳(メタデータ) (2023-05-21T11:20:49Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - Fast Yet Effective Machine Unlearning [6.884272840652062]
本稿では,誤り最大化雑音発生と不適切な反動に基づく重み操作を併用した新しい機械学習フレームワークを提案する。
モデル全体の精度を著しく保ちながら、優れた未学習を示す。
この作業は、ディープネットワークにおけるアンラーニングの迅速かつ簡単な実装に向けた重要なステップである。
論文 参考訳(メタデータ) (2021-11-17T07:29:24Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
本稿では,新しい数ショット学習タスクのための特定のメトリックを生成するための,新しい深度メタジェネレーション手法を提案する。
本研究では,各タスクの識別基準を生成するのに十分なフレキシブルな3層深い注意ネットワークを用いて,メトリクスを構造化する。
特に挑戦的なケースでは、最先端の競合他社よりも驚くほどパフォーマンスが向上しています。
論文 参考訳(メタデータ) (2020-12-03T02:07:43Z) - KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask Learning [49.77278179376902]
Deep Neural Networks (DNN)は、新しいタスクを学ぶときの以前のタスクに関する知識を忘れることができ、これはtextitcatastrophic forgettingとして知られている。
最近の連続学習手法は、玩具サイズのデータセットにおける破滅的な問題を緩和することができる。
我々は,各タスクに対して,カーネルワイドなハイブリッドな2値マスクと実値のソフトマスクを学習する,textit- Kernel-wise Soft Mask (KSM) と呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2020-09-11T21:48:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。