論文の概要: Foundation Models for Software Engineering of Cyber-Physical Systems: the Road Ahead
- arxiv url: http://arxiv.org/abs/2504.04630v1
- Date: Sun, 06 Apr 2025 21:42:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:52.144956
- Title: Foundation Models for Software Engineering of Cyber-Physical Systems: the Road Ahead
- Title(参考訳): サイバー物理システムのソフトウェア工学の基礎モデル--その先へ
- Authors: Chengjie Lu, Pablo Valle, Jiahui Wu, Erblin Isaku, Hassan Sartaj, Aitor Arrieta, Shaukat Ali,
- Abstract要約: ファンデーションモデル(FM)は、様々なソフトウェアエンジニアリング活動をサポートするためにますます使われています。
CPS(Cyber-Physical Systems)のソフトウェア工学への応用も増加している。
そこで本研究では,CPSソフトウェア工学の様々なフェーズにFMを統合するための研究ロードマップを提案する。
- 参考スコア(独自算出の注目度): 11.86894216728323
- License:
- Abstract: Foundation Models (FMs), particularly Large Language Models (LLMs), are increasingly used to support various software engineering activities (e.g., coding and testing). Their applications in the software engineering of Cyber-Physical Systems (CPSs) are also growing. However, research in this area remains limited. Moreover, existing studies have primarily focused on LLMs-only one type of FM-leaving ample opportunities to explore others, such as vision-language models. We argue that, in addition to LLMs, other FMs utilizing different data modalities (e.g., images, audio) and multimodal models (which integrate multiple modalities) hold great potential for supporting CPS software engineering, given that these systems process diverse data types. To address this, we present a research roadmap for integrating FMs into various phases of CPS software engineering, highlighting key research opportunities and challenges for the software engineering community.
- Abstract(参考訳): Foundation Models(FM)、特にLarge Language Models(LLM)は、さまざまなソフトウェアエンジニアリング活動(コーディングやテストなど)をサポートするためにますます使われています。
CPS(Cyber-Physical Systems)のソフトウェア工学への応用も増加している。
しかし、この地域の研究は限られている。
さらに、既存の研究は主に、視覚言語モデルなど他の分野を探索するためのFM除去の機会として、LSMのみに焦点を当てている。
LLMに加えて、異なるデータモダリティ(例えば、画像、音声)とマルチモーダルモデル(複数のモダリティを統合する)を利用する他のFMは、これらのシステムが多様なデータタイプを処理することを考えると、CPSソフトウェアエンジニアリングをサポートする大きな可能性を秘めている、と我々は主張する。
そこで我々は,CPSソフトウェア工学の様々な段階にFMを統合するための研究ロードマップを提示し,ソフトウェア工学コミュニティにとって重要な研究の機会と課題を強調した。
関連論文リスト
- Software Engineering and Foundation Models: Insights from Industry Blogs Using a Jury of Foundation Models [11.993910471523073]
我々は大手テクノロジー企業から155 FM4SEと997 SE4FMのブログ記事を分析した。
我々は、コード生成が最も顕著なFM4SEタスクであるのに対して、FMは他の多くのSEアクティビティに活用されていることを観察した。
クラウドのデプロイに重点を置いているが、FMを圧縮し、小さなデバイスにデプロイすることへの関心が高まっている。
論文 参考訳(メタデータ) (2024-10-11T17:27:04Z) - Machine Learning Operations: A Mapping Study [0.0]
この記事では、MLOpsパイプラインのいくつかのコンポーネントに存在する問題について論じる。
MLOpsシステムで発生する課題を、異なる焦点領域に分類するために、システマティックマッピング研究が実施されている。
この研究の主な価値は、MLOpsの独特な課題と、私たちの研究で概説された推奨された解決策をマッピングすることです。
論文 参考訳(メタデータ) (2024-09-28T17:17:40Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - A Systematic Literature Review on the Use of Machine Learning in Software Engineering [0.0]
本研究は,ソフトウェア工学プロセスに機械学習技術を適用する際の技術の現状を探るため,その目的と研究課題に従って実施された。
レビューでは、ソフトウェア品質保証、ソフトウェア保守、ソフトウェア理解、ソフトウェアドキュメントなど、MLが適用されたソフトウェアエンジニアリングにおける重要な領域を特定している。
論文 参考訳(メタデータ) (2024-06-19T23:04:27Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - State Space Model for New-Generation Network Alternative to Transformers: A Survey [52.812260379420394]
深層学習時代において、Transformerアーキテクチャは、トレーニング済みのビッグモデルとさまざまなダウンストリームタスクにまたがる強力なパフォーマンスを示してきた。
注意モデルの複雑さをさらに軽減するために、より効率的な手法を設計するための多くの努力がなされている。
その中でも、自己注意に基づくトランスフォーマーモデルの代替として、ステートスペースモデル(SSM)が近年ますます注目を集めている。
論文 参考訳(メタデータ) (2024-04-15T07:24:45Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
モデルは、ソフトウェア工学(SE)と人工知能(AI)のコミュニティで使われている。
主な焦点はIoT(Internet of Things)とCPS(Smart Cyber-Physical Systems)のユースケースである。
論文 参考訳(メタデータ) (2021-07-06T15:50:50Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。