論文の概要: AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
- arxiv url: http://arxiv.org/abs/2504.04706v1
- Date: Mon, 07 Apr 2025 03:31:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:45.891216
- Title: AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
- Title(参考訳): AdvKT:知識追跡のための逆多段階学習フレームワーク
- Authors: Lingyue Fu, Ting Long, Jianghao Lin, Wei Xia, Xinyi Dai, Ruiming Tang, Yasheng Wang, Weinan Zhang, Yong Yu,
- Abstract要約: 知識追跡(KT)は、学生の知識状態を監視し、質問シーケンスに対する反応をシミュレートする。
既存のKTモデルは通常、単一ステップのトレーニングパラダイムに従っており、大きなエラーの蓄積につながる。
本稿では,多段階KTタスクに着目した新しい知識追跡のための多段階学習フレームワーク(AdvKT)を提案する。
- 参考スコア(独自算出の注目度): 64.79967583649407
- License:
- Abstract: Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
- Abstract(参考訳): 知識追跡(KT)は、学生の知識状態を監視し、質問シーケンスに対する反応をシミュレートする。
既存のKTモデルは通常、単一ステップのトレーニングパラダイムに従っており、実際のシミュレーションに必要な複数ステップの推論プロセスとの相違が生じ、エラーの蓄積が大幅に増加する。
このエラーの蓄積は、データ疎度の問題と相まって、インテリジェントなチューリングシステムにおけるレコメンデーションモデルの性能を著しく低下させる可能性がある。
これらの課題に対処するため,我々は,多段階KTタスクに焦点をあてた新しい多段階知識追跡学習フレームワーク(AdvKT)を提案する。
より具体的には、AdvKTはジェネレータと識別器を含む敵対的学習パラダイムを活用する。
ジェネレータは高逆応答を模倣し、複数のステップにわたるエラーの蓄積を効果的に低減し、判別器は合成データを生成するフィードバックを提供する。
さらに、訓練データを現実的なバリエーションで強化する特化データ拡張手法を設計し、スパースデータを用いたシナリオにおいてもモデルが適切に一般化されることを保証した。
4つの実世界のデータセットで実施された実験は、既存のKTモデルよりもAdvKTの方が優れていることを示した。
関連論文リスト
- CorrSynth -- A Correlated Sampling Method for Diverse Dataset Generation from LLMs [5.89889361990138]
大規模言語モデル(LLM)は、ゼロショットプロンプトと少数ショットプロンプトを使用して、多様なタスクにおいて顕著な性能を示した。
本研究では,下流の課題に対して,学生モデルが訓練されるような,多様性の高いデータセットを生成するという課題に取り組む。
復号時間誘導に基づくアプローチの経路を考慮し、相関したサンプリング戦略を用いて、入力プロンプトにより多様で忠実なデータを生成するCorr Synthを提案する。
論文 参考訳(メタデータ) (2024-11-13T12:09:23Z) - Distributionally robust self-supervised learning for tabular data [2.942619386779508]
エラースライスの存在下での堅牢な表現の学習は、高い濃度特徴とエラーセットの構築の複雑さのために困難である。
従来の堅牢な表現学習手法は、コンピュータビジョンにおける教師付き設定における最悪のグループパフォーマンスの改善に主に焦点をあてている。
提案手法は,Masked Language Modeling (MLM) の損失を学習したエンコーダ・デコーダモデルを用いて,頑健な潜在表現を学習する。
論文 参考訳(メタデータ) (2024-10-11T04:23:56Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD)は、既存のデータサンプルのラベルを他のクラスに戻すのに、最小限かつ十分な修正を適用することで、新しいデータサンプルを作成する。
近年の研究では、CADを用いたトレーニングが、他の重要な文脈情報を無視しながら、モデルが修正機能に過度にフォーカスする可能性があることが示されている。
我々は、対実的手がかりの学習に加えて、グローバルな特徴アライメントを促進するために、対照的な学習を採用する。
論文 参考訳(メタデータ) (2024-06-09T07:29:55Z) - Effective and Robust Adversarial Training against Data and Label Corruptions [35.53386268796071]
データ摂動とラベルノイズによる破損は、信頼できない情報源からのデータセットに多い。
我々は,2種類の汚職を同時に扱うための,効果的かつロバストな適応訓練フレームワークを開発した。
論文 参考訳(メタデータ) (2024-05-07T10:53:20Z) - Improving Low-Resource Knowledge Tracing Tasks by Supervised Pre-training and Importance Mechanism Fine-tuning [25.566963415155325]
上記の課題に対処するため,低リソースのKTフレームワークであるLoReKTを提案する。
一般的な"事前学習と微調整"パラダイムにインスパイアされた我々は、リッチリソースのKTデータセットから転送可能なパラメータと表現を学習することを目指している。
複数のKTデータソースからの学生のインタラクションを組み込むエンコーディング機構を設計する。
論文 参考訳(メタデータ) (2024-03-11T13:44:43Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Generative Adversarial Networks Unlearning [13.342749941357152]
機械学習は、訓練された機械学習モデルからトレーニングデータを消去するソリューションとして登場した。
GAN(Generative Adversarial Networks)の研究は、ジェネレータと識別器を含む独自のアーキテクチャによって制限されている。
本稿では,GANモデルにおける項目学習とクラス学習の両方を対象としたケースドアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-19T02:21:21Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。