論文の概要: CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images
- arxiv url: http://arxiv.org/abs/2504.04753v1
- Date: Mon, 07 Apr 2025 06:01:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:14.302382
- Title: CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images
- Title(参考訳): CADCrafter: 制約のない画像からコンピュータ支援デザインモデルを生成する
- Authors: Cheng Chen, Jiacheng Wei, Tianrun Chen, Chi Zhang, Xiaofeng Yang, Shangzhan Zhang, Bingchen Yang, Chuan-Sheng Foo, Guosheng Lin, Qixing Huang, Fayao Liu,
- Abstract要約: CADCrafterは画像からパラメトリックCADモデル生成フレームワークで、合成テクスチャなしCADデータのみをトレーニングする。
多様な幾何学的特徴を正確に捉えるための幾何エンコーダを導入する。
提案手法は、実際の制約のないCADイメージを頑健に処理でき、また、目に見えない汎用オブジェクトにも一般化できる。
- 参考スコア(独自算出の注目度): 69.7768227804928
- License:
- Abstract: Creating CAD digital twins from the physical world is crucial for manufacturing, design, and simulation. However, current methods typically rely on costly 3D scanning with labor-intensive post-processing. To provide a user-friendly design process, we explore the problem of reverse engineering from unconstrained real-world CAD images that can be easily captured by users of all experiences. However, the scarcity of real-world CAD data poses challenges in directly training such models. To tackle these challenges, we propose CADCrafter, an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data while testing on real-world images. To bridge the significant representation disparity between images and parametric CAD models, we introduce a geometry encoder to accurately capture diverse geometric features. Moreover, the texture-invariant properties of the geometric features can also facilitate the generalization to real-world scenarios. Since compiling CAD parameter sequences into explicit CAD models is a non-differentiable process, the network training inherently lacks explicit geometric supervision. To impose geometric validity constraints, we employ direct preference optimization (DPO) to fine-tune our model with the automatic code checker feedback on CAD sequence quality. Furthermore, we collected a real-world dataset, comprised of multi-view images and corresponding CAD command sequence pairs, to evaluate our method. Experimental results demonstrate that our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
- Abstract(参考訳): 物理的世界からCADデジタルツインを作ることは、製造、設計、シミュレーションに不可欠である。
しかし、現在の手法は通常、労働集約的な後処理を伴うコストの高い3Dスキャンに依存している。
ユーザフレンドリなデザインプロセスを実現するために,実世界の未制約CAD画像からリバースエンジニアリングの問題を探究する。
しかし,実際のCADデータの不足は,そのようなモデルを直接訓練する上での課題となっている。
これらの課題に対処するために,実世界の画像でテストしながら,合成テクスチャのないCADデータのみをトレーニングする画像-パラメトリックCADモデル生成フレームワークCADCrafterを提案する。
画像とパラメトリックCADモデルの顕著な表現格差を橋渡しするために,多様な幾何学的特徴を正確に捉えるための幾何エンコーダを導入する。
さらに、幾何学的特徴のテクスチャ不変性は、実世界のシナリオへの一般化を促進することができる。
CADパラメータ列を明示的なCADモデルにコンパイルすることは、微分不可能なプロセスであるため、ネットワークトレーニングは本質的に、明示的な幾何学的監督を欠いている。
幾何的妥当性の制約を課すため、CADシーケンスの品質に対する自動コードチェッカーフィードバックでモデルを微調整するために、直接選好最適化(DPO)を用いる。
さらに,マルチビュー画像と対応するCADコマンドシーケンスペアからなる実世界のデータセットを収集し,本手法の評価を行った。
実験結果から,本手法は実際の制約のないCAD画像に対して頑健に処理でき,また一般オブジェクトに対しても一般化可能であることが示された。
関連論文リスト
- Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CADは、生成プロセスを自動化するために調整された安定した拡散モデルを利用する新しいフレームワークである。
テキスト2CADは,高品質な3次元CADモデルに正確に変換された技術図面を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-11-09T15:12:06Z) - Img2CAD: Conditioned 3D CAD Model Generation from Single Image with Structured Visual Geometry [12.265852643914439]
編集可能なパラメータを生成するために2次元画像入力を用いた最初の知識であるImg2CADを提案する。
Img2CADはAI 3D再構成とCAD表現のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2024-10-04T13:27:52Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
再構成ネットワークPS-CADに幾何学的ガイダンスを導入する。
我々は、現在の再構成が点雲としての完備モデルと異なる曲面の幾何学を提供する。
第二に、幾何学的解析を用いて、候補面に対応する平面的プロンプトの集合を抽出する。
論文 参考訳(メタデータ) (2024-05-24T03:43:55Z) - DiffCAD: Weakly-Supervised Probabilistic CAD Model Retrieval and Alignment from an RGB Image [34.47379913018661]
本稿では,RGB画像からのCAD検索とアライメントに対する,最初の弱教師付き確率的アプローチであるDiffCADを提案する。
我々はこれを条件付き生成タスクとして定式化し、拡散を利用して画像中のCADオブジェクトの形状、ポーズ、スケールをキャプチャする暗黙の確率モデルを学ぶ。
提案手法は, 合成データのみを用いて学習し, 単眼深度とマスク推定を利用して, 種々の実対象領域へのロバストなゼロショット適応を実現する。
論文 参考訳(メタデータ) (2023-11-30T15:10:21Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Netは、コンパクトで使いやすいCADモデルの再構築を目的とした、エンドツーエンドのニューラルネットワークである。
本研究は,CAD再構築の手法など,最先端の代替手段よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-19T09:26:03Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
完全自動かつタスクに依存しないCAD生成フレームワークであるAutoCADについて述べる。
本稿では,完全に自動化されたタスクに依存しないCAD生成フレームワークであるAutoCADを提案する。
論文 参考訳(メタデータ) (2022-11-29T13:39:53Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
この課題を解決するために,新しいニューラルネットワークアーキテクチャを導入する。
本手法は形状を分解することでボクセル空間の入力幾何を再構成する。
推論の際には,まず2次元制約付きスケッチのデータベースを検索し,CADデータを取得する。
論文 参考訳(メタデータ) (2022-09-02T16:44:10Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
本稿では,2次元画像と3次元CADモデルの結合埋め込み空間をパッチワイズで構築する手法を提案する。
我々のアプローチは、CADが正確に一致しない実世界のシナリオにおける最先端技術よりも堅牢である。
論文 参考訳(メタデータ) (2021-08-20T20:58:52Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
本稿では,既存の3次元モデルの大規模データセットを活用し,画像中の物体の3次元構造を理解することを提案する。
本稿では,実世界の画像と検出対象を共同で検出するMask2CADについて,最も類似したCADモデルとそのポーズを最適化する。
これにより、画像内のオブジェクトのクリーンで軽量な表現が生成される。
論文 参考訳(メタデータ) (2020-07-26T00:08:37Z) - CAD-Deform: Deformable Fitting of CAD Models to 3D Scans [30.451330075135076]
本稿では,検索したCADモデルを用いて,より高精度なCAD-to-Scanマッチングを実現するCAD-Deformを提案する。
一連の実験により,本手法はより厳密なスキャン・トゥ・CAD適合性を実現し,スキャンした実環境のより正確なデジタル複製を可能にした。
論文 参考訳(メタデータ) (2020-07-23T12:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。