Bottom-Up Scattering Information Perception Network for SAR target recognition
- URL: http://arxiv.org/abs/2504.04780v1
- Date: Mon, 07 Apr 2025 07:15:08 GMT
- Title: Bottom-Up Scattering Information Perception Network for SAR target recognition
- Authors: Chenxi Zhao, Daochang Wang, Siqian Zhang, Gangyao Kuang,
- Abstract summary: This paper proposes a novel bottom-up scattering information perception network for more interpretable target recognition.<n>First, the localized scattering perceptron is proposed to replace the backbone feature extractor based on CNN networks.<n>Second, an unsupervised scattering part feature extraction model is proposed to robustly characterize the target scattering part information.<n>Third, by aggregating the knowledge of target parts to form the complete target description, the interpretability and discriminative ability of the model is improved.
- Score: 9.694730272245849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods based synthetic aperture radar (SAR) image target recognition tasks have been widely studied currently. The existing deep methods are insufficient to perceive and mine the scattering information of SAR images, resulting in performance bottlenecks and poor robustness of the algorithms. To this end, this paper proposes a novel bottom-up scattering information perception network for more interpretable target recognition by constructing the proprietary interpretation network for SAR images. Firstly, the localized scattering perceptron is proposed to replace the backbone feature extractor based on CNN networks to deeply mine the underlying scattering information of the target. Then, an unsupervised scattering part feature extraction model is proposed to robustly characterize the target scattering part information and provide fine-grained target representation. Finally, by aggregating the knowledge of target parts to form the complete target description, the interpretability and discriminative ability of the model is improved. We perform experiments on the FAST-Vehicle dataset and the SAR-ACD dataset to validate the performance of the proposed method.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection [10.202639589226076]
This work proposes an interpretable deep network for detecting infrared dim targets, dubbed RPCANet.
Our approach formulates the ISTD task as sparse target extraction, low-rank background estimation, and image reconstruction.
By unfolding the iterative optimization updating steps into a deep-learning framework, time-consuming and complex matrix calculations are replaced by theory-guided neural networks.
arXiv Detail & Related papers (2023-11-02T01:21:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
arXiv Detail & Related papers (2022-11-28T01:28:33Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.