Fast gates for bit-flip protected superconducting qubits
- URL: http://arxiv.org/abs/2504.04807v1
- Date: Mon, 07 Apr 2025 08:03:19 GMT
- Title: Fast gates for bit-flip protected superconducting qubits
- Authors: C. A. Siegele, A. A. Sokolova, L. N. Kapoor, F. Hassani, J. M. Fink,
- Abstract summary: We introduce a qubit architecture with real-time tunable bit-flip protection.<n>We show that base-band flux-pulses of around 10 ns are sufficient to realize a universal set of high-fidelity single- and two-qubit gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting qubits offer an unprecedentedly high degree of flexibility in terms of circuit encoding and parameter choices. However, in designing the qubit parameters one typically faces the conflicting goals of long coherence times and simple control capabilities. Both are determined by the wavefunction overlap of the qubit basis states and the corresponding matrix elements. Here, we address this problem by introducing a qubit architecture with real-time tunable bit-flip protection. In the first, the `heavy' regime, the energy relaxation time can be on the order of hours for fluxons located in two near-degenerate ground states, as recently demonstrated in Ref. [Hassani et al., Nat.~Commun.~14 (2023)]. The second, `light' regime, on the other hand facilitates high-fidelity control on nanosecond timescales without the need for microwave signals. We propose two different tuning mechanisms of the qubit potential and show that base-band flux-pulses of around 10 ns are sufficient to realize a universal set of high-fidelity single- and two-qubit gates. We expect that the concept of real-time wavefunction control can also be applied to other hardware-protected qubit designs.
Related papers
- Non-degenerate noise-resilient superconducting qubit [0.531628684262717]
We propose a superconducting qubit based on engineering the first and second harmonics of the Josephson energy and phase relation.<n>By constructing a circuit such that $E_J2$ is negative and $|E_J1| ll |E_J2|$, we create a periodic potential with two non-degenerate minima.<n>The qubit, which we dub "harmonium", is formed from the lowest-energy states of each minimum.
arXiv Detail & Related papers (2025-02-21T13:34:31Z) - Multi-Purpose Architecture for Fast Reset and Protective Readout of Superconducting Qubits [25.833934622405998]
We present a novel multi-purpose architecture that enables fast reset and protection of superconducting qubits during control and readout.<n>We demonstrate resetting a transmon qubit from its first excited state to the ground state in 100 ns, achieving a residual population of 2.7%.<n>Our approach promises scalable implementation of fast reset and qubit protection during control and readout.
arXiv Detail & Related papers (2024-07-31T04:44:40Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Speed limits for two-qubit gates with weakly anharmonic qubits [0.6738135972929344]
We use optimal control theory to determine the maximum achievable gate speed for two-qubit gates.
We analyze the effect of the additional quantum states on the gate speed.
arXiv Detail & Related papers (2021-09-03T12:07:59Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.