論文の概要: An Efficient Approach for Cooperative Multi-Agent Learning Problems
- arxiv url: http://arxiv.org/abs/2504.04850v1
- Date: Mon, 07 Apr 2025 09:03:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:52.563564
- Title: An Efficient Approach for Cooperative Multi-Agent Learning Problems
- Title(参考訳): 協調型マルチエージェント学習問題に対する効率的なアプローチ
- Authors: Ángel Aso-Mollar, Eva Onaindia,
- Abstract要約: 本稿では,複数のエージェントの同時動作をモデル化する政策学習のための中心的枠組みを提案する。
本手法は,集中型手法に典型的なスケーラビリティ問題を克服する逐次的抽象化によるコーディネーション問題に対処する。
実験の結果,提案手法は多様なマルチエージェント学習環境におけるエージェントのコーディネートに成功していることがわかった。
- 参考スコア(独自算出の注目度): 0.8287206589886881
- License:
- Abstract: In this article, we propose a centralized Multi-Agent Learning framework for learning a policy that models the simultaneous behavior of multiple agents that need to coordinate to solve a certain task. Centralized approaches often suffer from the explosion of an action space that is defined by all possible combinations of individual actions, known as joint actions. Our approach addresses the coordination problem via a sequential abstraction, which overcomes the scalability problems typical to centralized methods. It introduces a meta-agent, called \textit{supervisor}, which abstracts joint actions as sequential assignments of actions to each agent. This sequential abstraction not only simplifies the centralized joint action space but also enhances the framework's scalability and efficiency. Our experimental results demonstrate that the proposed approach successfully coordinates agents across a variety of Multi-Agent Learning environments of diverse sizes.
- Abstract(参考訳): 本稿では,ある課題を解決するために協調する必要がある複数のエージェントの同時動作をモデル化するポリシーを学習するための,集中型マルチエージェント学習フレームワークを提案する。
中央集権化されたアプローチは、共同行動として知られる個々の行動のあらゆる組み合わせによって定義される行動空間の爆発にしばしば悩まされる。
本手法は,集中型手法に典型的なスケーラビリティ問題を克服する逐次的抽象化によるコーディネーション問題に対処する。
これは‘textit{supervisor}’と呼ばれるメタエージェントを導入し、各エージェントへのアクションのシーケンシャルな代入としてジョイントアクションを抽象化する。
このシーケンシャルな抽象化は、集中的な共同アクション空間を単純化するだけでなく、フレームワークのスケーラビリティと効率を向上させる。
実験結果から,提案手法は多種多様なマルチエージェント学習環境におけるエージェントのコーディネートに成功していることが示された。
関連論文リスト
- Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
本稿では,エージェントが一括して斬新な行動を示すような報奨戦略を提案する。
ジムは連続した環境で機能するように設計されたノベルティの集中的な尺度に基づいて共同軌道に報いる。
その結果、最適戦略が高レベルの調整を必要とするタスクの解決には、共同探索が不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T13:02:00Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
本稿では,異なるエージェント間で共有される学習された潜在行動空間を通じて,マルチロボット操作を協調する手法を提案する。
シミュレーションされたマルチロボット操作タスクにおいて本手法を検証し,サンプル効率と学習性能の観点から,従来のベースラインよりも改善したことを示す。
論文 参考訳(メタデータ) (2022-11-28T23:20:47Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
分散型マルチエージェント学習と計画に対する新しいアプローチを検討する。
特に、この方法はアリコロニーの凝集、協調、行動に触発されている。
このアプローチは、単一エージェントRLと、マルチエージェントパス計画と環境修正のためのアリコロニーに触発された分散型のスティグメロジカルアルゴリズムを組み合わせたものである。
論文 参考訳(メタデータ) (2021-05-08T01:04:51Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。