論文の概要: Constraint Multi-class Positive and Unlabeled Learning for Distantly Supervised Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2504.04963v1
- Date: Mon, 07 Apr 2025 11:51:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:12:35.135423
- Title: Constraint Multi-class Positive and Unlabeled Learning for Distantly Supervised Named Entity Recognition
- Title(参考訳): 遠隔教師付き名前付きエンティティ認識のための制約付き多クラス正・非ラベル学習
- Authors: Yuzhe Zhang, Min Cen, Hong Zhang,
- Abstract要約: 我々は,textbfConstraint textbfMulti-class textbfPositive and textbfUn Learning (CMPU) と呼ばれる新しい手法を提案する。
制約非負のリスク推定器は, 前回のPU学習法よりも, 過度に適合する傾向が強いことが示唆された。
- 参考スコア(独自算出の注目度): 4.532252099910803
- License:
- Abstract: Distantly supervised named entity recognition (DS-NER) has been proposed to exploit the automatically labeled training data by external knowledge bases instead of human annotations. However, it tends to suffer from a high false negative rate due to the inherent incompleteness. To address this issue, we present a novel approach called \textbf{C}onstraint \textbf{M}ulti-class \textbf{P}ositive and \textbf{U}nlabeled Learning (CMPU), which introduces a constraint factor on the risk estimator of multiple positive classes. It suggests that the constraint non-negative risk estimator is more robust against overfitting than previous PU learning methods with limited positive data. Solid theoretical analysis on CMPU is provided to prove the validity of our approach. Extensive experiments on two benchmark datasets that were labeled using diverse external knowledge sources serve to demonstrate the superior performance of CMPU in comparison to existing DS-NER methods.
- Abstract(参考訳): 人間のアノテーションの代わりに外部知識ベースによって自動的にラベル付けされたトレーニングデータを活用するために、遠隔監視型エンティティ認識(DS-NER)が提案されている。
しかし、本質的な不完全性のため、高い偽陰性率に悩まされる傾向がある。
この問題に対処するため,本稿では,複数の正のクラスに対するリスク推定に制約因子を導入する,新しいアプローチとして, {textbf{C}onstraint \textbf{M}ulti-class \textbf{P}ositive and \textbf{U}nlabeled Learning (CMPU)を提案する。
制約非負のリスク推定器は, 前回のPU学習法よりも, 過度に適合する傾向が強いことが示唆された。
本手法の有効性を証明するため,CMPUに関する理論解析を行った。
様々な外部知識ソースを用いてラベル付けされた2つのベンチマークデータセットの大規模な実験は、既存のDS-NER法と比較してCMPUの優れた性能を示すのに役立つ。
関連論文リスト
- Towards Robust Uncertainty-Aware Incomplete Multi-View Classification [11.617211995206018]
不完全なMVCシナリオにおけるEDLに基づく手法を強化するために、Alternating Progressive Learning Network (APLN)を提案する。
APLNは、まず粗い計算を適用し、次にデータを潜在空間にマッピングすることで、破損した観測データからのバイアスを緩和する。
また、矛盾する証拠をよりよく扱うために、コンフリクト対応のDempster-Shaferコンビネーションルール(DSCR)を導入します。
論文 参考訳(メタデータ) (2024-09-10T07:18:57Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
オープンセット半教師付き学習(Open-set SSL)は、ラベル付きデータ(inliers)で観測されない新しいカテゴリ(outliers)を含むラベル付きデータとテストデータを含む、より実践的なシナリオである。
本研究では,様々な不確かさを定量化するための外乱検出器として顕在的深層学習(EDL)を導入し,自己学習と推論のための異なる不確実性指標を設計する。
Inlierとoutlierの両方を含むラベルなしデータセットに適合するように、新しい適応的負の最適化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-21T09:07:15Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Learning from Positive and Unlabeled Data with Augmented Classes [17.97372291914351]
Augmented Classes (PUAC) を用いたPU学習のための非バイアスリスク推定器を提案する。
提案手法は,最適解への収束を理論的に保証する推定誤差を導出する。
論文 参考訳(メタデータ) (2022-07-27T03:40:50Z) - Distantly Supervised Named Entity Recognition via Confidence-Based
Multi-Class Positive and Unlabeled Learning [9.674267150358789]
我々は,多クラス正・非ラベル学習(MPU)を用いて,Distantly Supervised NER (DS-NER)問題を定式化する。
不完全なアノテーションを扱うための理論的かつ実用的なMPU(Conf-MPU)アプローチを提案する。
論文 参考訳(メタデータ) (2022-03-03T17:55:35Z) - A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training [24.411703133156394]
本稿では、ワッサーシュタイン分布のロバスト性と現在の最先端AT法を結合する統一的なフレームワークを提案する。
我々は、新しいワッサースタインコスト関数と、新しい一連のリスク関数を導入し、標準ATメソッドが我々のフレームワークのそれに対応する特別なケースであることを示す。
この接続は、既存のAT手法の直感的な緩和と一般化をもたらし、分散ロバスト性ATベースのアルゴリズムの新たなファミリーの開発を促進する。
論文 参考訳(メタデータ) (2022-02-27T19:40:29Z) - Learning from Similarity-Confidence Data [94.94650350944377]
類似度信頼性(Sconf)データから学習する新しい弱監督学習問題について検討する。
本研究では,Sconfデータのみから計算可能な分類リスクの非バイアス推定器を提案し,推定誤差境界が最適収束率を達成することを示す。
論文 参考訳(メタデータ) (2021-02-13T07:31:16Z) - Multi-label Contrastive Predictive Coding [125.03510235962095]
差分相互情報(MI)推定器は、コントラスト予測符号化(CPC)のような教師なし表現学習法で広く利用されている。
本稿では,複数の正のサンプルを同時に同定する必要がある多ラベル分類問題に基づく新しい推定器を提案する。
同一量の負のサンプルを用いて複数ラベルのCPCが$log m$boundを超えることができる一方で、相互情報の有意な下限であることを示す。
論文 参考訳(メタデータ) (2020-07-20T02:46:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。