Surveying Professional Writers on AI: Limitations, Expectations, and Fears
- URL: http://arxiv.org/abs/2504.05008v1
- Date: Mon, 07 Apr 2025 12:35:17 GMT
- Title: Surveying Professional Writers on AI: Limitations, Expectations, and Fears
- Authors: Anastasiia Ivanova, Natalia Fedorova, Sergey Tilga, Ekaterina Artemova,
- Abstract summary: The rapid development of AI-driven tools, particularly large language models (LLMs), is reshaping professional writing.<n>Key aspects of their adoption such as languages support, ethics, and long-term impact on writers voice and creativity remain underexplored.
- Score: 2.6658347208573447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of AI-driven tools, particularly large language models (LLMs), is reshaping professional writing. Still, key aspects of their adoption such as languages support, ethics, and long-term impact on writers voice and creativity remain underexplored. In this work, we conducted a questionnaire (N = 301) and an interactive survey (N = 36) targeting professional writers regularly using AI. We examined LLM-assisted writing practices across 25+ languages, ethical concerns, and user expectations. The findings of the survey demonstrate important insights, reflecting upon the importance of: LLMs adoption for non-English speakers; the degree of misinformation, domain and style adaptation; usability and key features of LLMs. These insights can guide further development, benefiting both writers and a broader user base.
Related papers
- Does the Prompt-based Large Language Model Recognize Students' Demographics and Introduce Bias in Essay Scoring? [3.7498611358320733]
Large Language Models (LLMs) are widely used in Automated Essay Scoring (AES)
This study explores the relationship between the model's predictive power of students' demographic attributes based on their written works and its predictive bias in the scoring task in the prompt-based paradigm.
arXiv Detail & Related papers (2025-04-30T05:36:28Z) - Mind the Gap! Choice Independence in Using Multilingual LLMs for Persuasive Co-Writing Tasks in Different Languages [51.96666324242191]
We analyze whether user utilization of novel writing assistants in a charity advertisement writing task is affected by the AI's performance in a second language.<n>We quantify the extent to which these patterns translate into the persuasiveness of generated charity advertisements.
arXiv Detail & Related papers (2025-02-13T17:49:30Z) - Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
Large language models (LLMs) like OpenAI's ChatGPT have opened up new avenues in education.<n>Despite school restrictions, our survey of over 300 middle and high school students revealed that a remarkable 70% of students have utilized LLMs.<n>We propose a few ideas to address such issues, including subject-specific models, personalized learning, and AI classrooms.
arXiv Detail & Related papers (2024-11-27T19:19:34Z) - "It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models [97.22914355737676]
We examine whether and how writers want to preserve their authentic voice when co-writing with AI tools.
Our findings illuminate conceptions of authenticity in human-AI co-creation.
Readers' responses showed less concern about human-AI co-writing.
arXiv Detail & Related papers (2024-11-20T04:42:32Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
Authorship attribution aims to identify the origin or author of a document.
Large Language Models (LLMs) with their deep reasoning capabilities and ability to maintain long-range textual associations offer a promising alternative.
Our results on the IMDb and blog datasets show an impressive 85% accuracy in one-shot authorship classification across ten authors.
arXiv Detail & Related papers (2024-10-29T04:14:23Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - Can Large Language Models Identify Authorship? [16.35265384114857]
Large Language Models (LLMs) have demonstrated an exceptional capacity for reasoning and problem-solving.
This work seeks to address three research questions: (1) Can LLMs perform zero-shot, end-to-end authorship verification effectively?
(2) Are LLMs capable of accurately attributing authorship among multiple candidates authors (e.g., 10 and 20)?
arXiv Detail & Related papers (2024-03-13T03:22:02Z) - History, Development, and Principles of Large Language Models-An Introductory Survey [15.875687167037206]
Language models serve as a cornerstone in natural language processing (NLP)
Over extensive research spanning decades, language modeling has progressed from initial statistical language models (SLMs) to the contemporary landscape of large language models (LLMs)
arXiv Detail & Related papers (2024-02-10T01:18:15Z) - Creativity Support in the Age of Large Language Models: An Empirical
Study Involving Emerging Writers [33.3564201174124]
We investigate the utility of modern large language models in assisting professional writers via an empirical user study.
We find that while writers seek LLM's help across all three types of cognitive activities, they find LLMs more helpful in translation and reviewing.
arXiv Detail & Related papers (2023-09-22T01:49:36Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - Towards LLM-based Autograding for Short Textual Answers [4.853810201626855]
This manuscript is an evaluation of a large language model for the purpose of autograding.
Our findings suggest that while "out-of-the-box" LLMs provide a valuable tool, their readiness for independent automated grading remains a work in progress.
arXiv Detail & Related papers (2023-09-09T22:25:56Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic.
The adversarial prompts are then employed in diverse tasks including sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving.
Our findings demonstrate that contemporary Large Language Models are not robust to adversarial prompts.
arXiv Detail & Related papers (2023-06-07T15:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.