Mind the Gap! Choice Independence in Using Multilingual LLMs for Persuasive Co-Writing Tasks in Different Languages
- URL: http://arxiv.org/abs/2502.09532v1
- Date: Thu, 13 Feb 2025 17:49:30 GMT
- Title: Mind the Gap! Choice Independence in Using Multilingual LLMs for Persuasive Co-Writing Tasks in Different Languages
- Authors: Shreyan Biswas, Alexander Erlei, Ujwal Gadiraju,
- Abstract summary: We analyze whether user utilization of novel writing assistants in a charity advertisement writing task is affected by the AI's performance in a second language.
We quantify the extent to which these patterns translate into the persuasiveness of generated charity advertisements.
- Score: 51.96666324242191
- License:
- Abstract: Recent advances in generative AI have precipitated a proliferation of novel writing assistants. These systems typically rely on multilingual large language models (LLMs), providing globalized workers the ability to revise or create diverse forms of content in different languages. However, there is substantial evidence indicating that the performance of multilingual LLMs varies between languages. Users who employ writing assistance for multiple languages are therefore susceptible to disparate output quality. Importantly, recent research has shown that people tend to generalize algorithmic errors across independent tasks, violating the behavioral axiom of choice independence. In this paper, we analyze whether user utilization of novel writing assistants in a charity advertisement writing task is affected by the AI's performance in a second language. Furthermore, we quantify the extent to which these patterns translate into the persuasiveness of generated charity advertisements, as well as the role of peoples' beliefs about LLM utilization in their donation choices. Our results provide evidence that writers who engage with an LLM-based writing assistant violate choice independence, as prior exposure to a Spanish LLM reduces subsequent utilization of an English LLM. While these patterns do not affect the aggregate persuasiveness of the generated advertisements, people's beliefs about the source of an advertisement (human versus AI) do. In particular, Spanish-speaking female participants who believed that they read an AI-generated advertisement strongly adjusted their donation behavior downwards. Furthermore, people are generally not able to adequately differentiate between human-generated and LLM-generated ads. Our work has important implications for the design, development, integration, and adoption of multilingual LLMs as assistive agents -- particularly in writing tasks.
Related papers
- Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language [41.052284715017606]
We study the ability of Large Language Models (LLMs) to produce persuasive text.
As opposed to prior work which focuses on particular domains or types of persuasion, we conduct a general study across various domains.
We construct the new dataset Persuasive-Pairs of pairs of pairs of a short text and its rewrite by an LLM to amplify or diminish persuasive language.
arXiv Detail & Related papers (2024-06-25T17:40:47Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - Secret Keepers: The Impact of LLMs on Linguistic Markers of Personal Traits [6.886654996060662]
We investigate the impact of Large Language Models (LLMs) on the linguistic markers of demographic and psychological traits.
Our findings indicate that although the use of LLMs slightly reduces the predictive power of linguistic patterns over authors' personal traits, the significant changes are infrequent.
arXiv Detail & Related papers (2024-03-30T06:49:17Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to imbalanced training corpora.
This work extends the evaluation from NLP tasks to real user queries.
For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising.
arXiv Detail & Related papers (2024-03-15T12:47:39Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks.
This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks.
arXiv Detail & Related papers (2024-02-28T15:15:39Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
Large Language Models (LLMs) have demonstrated exceptional natural language understanding abilities.
We propose a systematic way of qualifying the performance disparities of LLMs under multilingual settings.
The results show that GPT exhibits highly translating-like behaviour in multilingual settings.
arXiv Detail & Related papers (2023-05-24T02:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.