Concept Extraction for Time Series with ECLAD-ts
- URL: http://arxiv.org/abs/2504.05024v1
- Date: Mon, 07 Apr 2025 12:49:20 GMT
- Title: Concept Extraction for Time Series with ECLAD-ts
- Authors: Antonia Holzapfel, Andres Felipe Posada-Moreno, Sebastian Trimpe,
- Abstract summary: CNNs for time series classification (TSC) are being increasingly used in applications ranging from quality prediction to medical diagnosis.<n>CNNs are prone to learning shortcuts and biases, compromising their robustness and alignment with human expectations.<n>To assess whether such mechanisms are being used and the associated risk, it is essential to provide model explanations that reflect the inner workings of the model.
- Score: 5.467140383171385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) for time series classification (TSC) are being increasingly used in applications ranging from quality prediction to medical diagnosis. The black box nature of these models makes understanding their prediction process difficult. This issue is crucial because CNNs are prone to learning shortcuts and biases, compromising their robustness and alignment with human expectations. To assess whether such mechanisms are being used and the associated risk, it is essential to provide model explanations that reflect the inner workings of the model. Concept Extraction (CE) methods offer such explanations, but have mostly been developed for the image domain so far, leaving a gap in the time series domain. In this work, we present a CE and localization method tailored to the time series domain, based on the ideas of CE methods for images. We propose the novel method ECLAD-ts, which provides post-hoc global explanations based on how the models encode subsets of the input at different levels of abstraction. For this, concepts are produced by clustering timestep-wise aggregations of CNN activation maps, and their importance is computed based on their impact on the prediction process. We evaluate our method on synthetic and natural datasets. Furthermore, we assess the advantages and limitations of CE in time series through empirical results. Our results show that ECLAD-ts effectively explains models by leveraging their internal representations, providing useful insights about their prediction process.
Related papers
- ECATS: Explainable-by-design concept-based anomaly detection for time series [0.5956301166481089]
We propose ECATS, a concept-based neuro-symbolic architecture where concepts are represented as Signal Temporal Logic (STL) formulae.
We show that our model is able to achieve great classification performance while ensuring local interpretability.
arXiv Detail & Related papers (2024-05-17T08:12:53Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - ECLAD: Extracting Concepts with Local Aggregated Descriptors [6.470466745237234]
We propose a novel method for automatic concept extraction and localization based on representations obtained through pixel-wise aggregations of CNN activation maps.
We introduce a process for the validation of concept-extraction techniques based on synthetic datasets with pixel-wise annotations of their main components.
arXiv Detail & Related papers (2022-06-09T14:25:23Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - On the Post-hoc Explainability of Deep Echo State Networks for Time
Series Forecasting, Image and Video Classification [63.716247731036745]
echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm.
This work addresses this issue by conducting an explainability study of Echo State Networks when applied to learning tasks with time series, image and video data.
Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models.
arXiv Detail & Related papers (2021-02-17T08:56:33Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Concept-based model explanations for Electronic Health Records [1.6837409766909865]
Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations.
We propose an extension of the method to time series data to enable an application of TCAV to sequential predictions in the EHR.
arXiv Detail & Related papers (2020-12-03T22:18:24Z) - TimeSHAP: Explaining Recurrent Models through Sequence Perturbations [3.1498833540989413]
Recurrent neural networks are a standard building block in numerous machine learning domains.
The complex decision-making in these models is seen as a black-box, creating a tension between accuracy and interpretability.
In this work, we contribute to filling these gaps by presenting TimeSHAP, a model-agnostic recurrent explainer.
arXiv Detail & Related papers (2020-11-30T19:48:57Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.