Graph-based Diffusion Model for Collaborative Filtering
- URL: http://arxiv.org/abs/2504.05029v1
- Date: Mon, 07 Apr 2025 12:51:18 GMT
- Title: Graph-based Diffusion Model for Collaborative Filtering
- Authors: Xuan Zhang, Xiang Deng, Hongxing Yuan, Chunyu Wei, Yushun Fan,
- Abstract summary: We propose a Graph-based Diffusion Model for Collaborative Filtering (GDMCF)<n>GDMCF consistently outperforms state-of-the-art methods, highlighting its effectiveness in capturing higher-order collaborative signals.
- Score: 10.654721251152187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, diffusion-based recommendation methods have achieved impressive results. However, existing approaches predominantly treat each user's historical interactions as independent training samples, overlooking the potential of higher-order collaborative signals between users and items. Such signals, which encapsulate richer and more nuanced relationships, can be naturally captured using graph-based data structures. To address this limitation, we extend diffusion-based recommendation methods to the graph domain by directly modeling user-item bipartite graphs with diffusion models. This enables better modeling of the higher-order connectivity inherent in complex interaction dynamics. However, this extension introduces two primary challenges: (1) Noise Heterogeneity, where interactions are influenced by various forms of continuous and discrete noise, and (2) Relation Explosion, referring to the high computational costs of processing large-scale graphs. To tackle these challenges, we propose a Graph-based Diffusion Model for Collaborative Filtering (GDMCF). To address noise heterogeneity, we introduce a multi-level noise corruption mechanism that integrates both continuous and discrete noise, effectively simulating real-world interaction complexities. To mitigate relation explosion, we design a user-active guided diffusion process that selectively focuses on the most meaningful edges and active users, reducing inference costs while preserving the graph's topological integrity. Extensive experiments on three benchmark datasets demonstrate that GDMCF consistently outperforms state-of-the-art methods, highlighting its effectiveness in capturing higher-order collaborative signals and improving recommendation performance.
Related papers
- Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.<n>Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Diffusion-augmented Graph Contrastive Learning for Collaborative Filter [5.6604917723826365]
Graph-based collaborative filtering has been established as a prominent approach in recommendation systems.<n>Recent advances in Graph Contrastive Learning have demonstrated promising potential to alleviate data sparsity issues.<n>We propose Diffusion-augmented Contrastive Learning (DGCL) for enhanced collaborative filtering.
arXiv Detail & Related papers (2025-03-20T16:15:20Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks.
scaling them to large graphs is challenging due to the high computational and storage costs.
We present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works.
arXiv Detail & Related papers (2024-12-19T07:48:14Z) - MixRec: Heterogeneous Graph Collaborative Filtering [21.96510707666373]
We present a graph collaborative filtering model MixRec to disentangling users' multi-behavior interaction patterns.
Our model achieves this by incorporating intent disentanglement and multi-behavior modeling.
We also introduce a novel contrastive learning paradigm that adaptively explores the advantages of self-supervised data augmentation.
arXiv Detail & Related papers (2024-12-18T13:12:36Z) - Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
We propose Dual-Frequency Filtering Self-aware Graph Neural Networks (DFGNN)
DFGNN integrates low-pass and high-pass filters to extract smooth and detailed topological features.
It dynamically adjusts filtering ratios to accommodate both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-11-18T04:57:05Z) - Dual Conditional Diffusion Models for Sequential Recommendation [63.82152785755723]
We propose Dual Conditional Diffusion Models for Sequential Recommendation (DCRec)<n>DCRec integrates implicit and explicit information by embedding dual conditions into both the forward and reverse diffusion processes.<n>This allows the model to retain valuable sequential and contextual information while leveraging explicit user-item interactions to guide the recommendation process.
arXiv Detail & Related papers (2024-10-29T11:51:06Z) - Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity [10.683635786183894]
CF-Diff is a new diffusion model-based collaborative filtering method.
It is capable of making full use of collaborative signals along with multi-hop neighbors.
It achieves remarkable gains up to 7.29% compared to the best competitor.
arXiv Detail & Related papers (2024-04-22T14:49:46Z) - Graph Signal Diffusion Model for Collaborative Filtering [22.727100820178414]
Collaborative filtering is a critical technique in recommender systems.
Existing studies on diffusion model lack effective solutions for modeling implicit feedback.
We propose a novel Graph Signal Diffusion Model for Collaborative Filtering (named GiffCF)
arXiv Detail & Related papers (2023-11-15T07:25:14Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - Light Field Saliency Detection with Dual Local Graph Learning
andReciprocative Guidance [148.9832328803202]
We model the infor-mation fusion within focal stack via graph networks.
We build a novel dual graph modelto guide the focal stack fusion process using all-focus pat-terns.
arXiv Detail & Related papers (2021-10-02T00:54:39Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.