AsyReC: A Multimodal Graph-based Framework for Spatio-Temporal Asymmetric Dyadic Relationship Classification
- URL: http://arxiv.org/abs/2504.05030v1
- Date: Mon, 07 Apr 2025 12:52:23 GMT
- Title: AsyReC: A Multimodal Graph-based Framework for Spatio-Temporal Asymmetric Dyadic Relationship Classification
- Authors: Wang Tang, Fethiye Irmak Dogan, Linbo Qing, Hatice Gunes,
- Abstract summary: Dyadic social relationships are shaped by shared spatial and temporal experiences.<n>Current computational methods for modeling these relationships face three major challenges.<n>We propose AsyReC, a multimodal graph-based framework for asymmetric dyadic relationship classification.
- Score: 8.516886985159928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dyadic social relationships, which refer to relationships between two individuals who know each other through repeated interactions (or not), are shaped by shared spatial and temporal experiences. Current computational methods for modeling these relationships face three major challenges: (1) the failure to model asymmetric relationships, e.g., one individual may perceive the other as a friend while the other perceives them as an acquaintance, (2) the disruption of continuous interactions by discrete frame sampling, which segments the temporal continuity of interaction in real-world scenarios, and (3) the limitation to consider periodic behavioral cues, such as rhythmic vocalizations or recurrent gestures, which are crucial for inferring the evolution of dyadic relationships. To address these challenges, we propose AsyReC, a multimodal graph-based framework for asymmetric dyadic relationship classification, with three core innovations: (i) a triplet graph neural network with node-edge dual attention that dynamically weights multimodal cues to capture interaction asymmetries (addressing challenge 1); (ii) a clip-level relationship learning architecture that preserves temporal continuity, enabling fine-grained modeling of real-world interaction dynamics (addressing challenge 2); and (iii) a periodic temporal encoder that projects time indices onto sine/cosine waveforms to model recurrent behavioral patterns (addressing challenge 3). Extensive experiments on two public datasets demonstrate state-of-the-art performance, while ablation studies validate the critical role of asymmetric interaction modeling and periodic temporal encoding in improving the robustness of dyadic relationship classification in real-world scenarios. Our code is publicly available at: https://github.com/tw-repository/AsyReC.
Related papers
- Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition [53.02634128715853]
Few-shot action recognition (FSAR) aims to recognize novel action categories with few exemplars.
We propose HR2G-shot, a Hierarchical Relation-augmented Representation Generalization framework for FSAR.
It unifies three types of relation modeling (inter-frame, inter-video, and inter-task) to learn task-specific temporal patterns from a holistic view.
arXiv Detail & Related papers (2025-04-14T10:23:22Z) - Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs [3.833708891059351]
Community-aware Temporal Walks (CTWalks) is a novel framework for representation learning on continuous-time dynamic graphs.<n>CTWalks integrates a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process.<n> Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks.
arXiv Detail & Related papers (2025-01-21T04:16:46Z) - Relation Learning and Aggregate-attention for Multi-person Motion Prediction [13.052342503276936]
Multi-person motion prediction considers not just the skeleton structures or human trajectories but also the interactions between others.
Previous methods often overlook that the joints relations within an individual (intra-relation) and interactions among groups (inter-relation) are distinct types of representations.
We introduce a new collaborative framework for multi-person motion prediction that explicitly modeling these relations.
arXiv Detail & Related papers (2024-11-06T07:48:30Z) - A Joint Spectro-Temporal Relational Thinking Based Acoustic Modeling Framework [10.354955365036181]
Despite the crucial role relational thinking plays in human understanding of speech, it has yet to be leveraged in any artificial speech recognition systems.
This paper presents a novel spectro-temporal relational thinking based acoustic modeling framework.
Models built upon this framework outperform stateof-the-art systems with a 7.82% improvement in phoneme recognition tasks over the TIMIT dataset.
arXiv Detail & Related papers (2024-09-17T05:45:33Z) - Neural Persistence Dynamics [8.197801260302642]
We consider the problem of learning the dynamics in the topology of time-evolving point clouds.
Our proposed model - $textitNeural Persistence Dynamics$ - substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
arXiv Detail & Related papers (2024-05-24T17:20:18Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
We present a representation learning framework, Intensity Profile Projection, for continuous-time dynamic network data.
The framework consists of three stages: estimating pairwise intensity functions, learning a projection which minimises a notion of intensity reconstruction error.
Moreoever, we develop estimation theory providing tight control on the error of any estimated trajectory, indicating that the representations could even be used in quite noise-sensitive follow-on analyses.
arXiv Detail & Related papers (2023-06-09T15:38:25Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
We propose a Non-local Recurrent Neural Memory (NRNM) for supervised sequence representation learning.
Our model is able to capture long-range dependencies and latent high-level features can be distilled by our model.
Our model compares favorably against other state-of-the-art methods specifically designed for each of these sequence applications.
arXiv Detail & Related papers (2022-07-20T07:26:15Z) - An Empirical Study: Extensive Deep Temporal Point Process [61.14164208094238]
We first review recent research emphasis and difficulties in modeling asynchronous event sequences with deep temporal point process.<n>We propose a Granger causality discovery framework for exploiting the relations among multi-types of events.
arXiv Detail & Related papers (2021-10-19T10:15:00Z) - ConTIG: Continuous Representation Learning on Temporal Interaction
Graphs [32.25218861788686]
ConTIG is a continuous representation method that captures the continuous dynamic evolution of node embedding trajectories.
Our model exploit three-fold factors in dynamic networks which include latest interaction, neighbor features and inherent characteristics.
Experiments results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation and dynamic node classification tasks.
arXiv Detail & Related papers (2021-09-27T12:11:24Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.