Neural Persistence Dynamics
- URL: http://arxiv.org/abs/2405.15732v2
- Date: Wed, 13 Nov 2024 15:30:50 GMT
- Title: Neural Persistence Dynamics
- Authors: Sebastian Zeng, Florian Graf, Martin Uray, Stefan Huber, Roland Kwitt,
- Abstract summary: We consider the problem of learning the dynamics in the topology of time-evolving point clouds.
Our proposed model - $textitNeural Persistence Dynamics$ - substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
- Score: 8.197801260302642
- License:
- Abstract: We consider the problem of learning the dynamics in the topology of time-evolving point clouds, the prevalent spatiotemporal model for systems exhibiting collective behavior, such as swarms of insects and birds or particles in physics. In such systems, patterns emerge from (local) interactions among self-propelled entities. While several well-understood governing equations for motion and interaction exist, they are notoriously difficult to fit to data, as most prior work requires knowledge about individual motion trajectories, i.e., a requirement that is challenging to satisfy with an increasing number of entities. To evade such confounding factors, we investigate collective behavior from a $\textit{topological perspective}$, but instead of summarizing entire observation sequences (as done previously), we propose learning a latent dynamical model from topological features $\textit{per time point}$. The latter is then used to formulate a downstream regression task to predict the parametrization of some a priori specified governing equation. We implement this idea based on a latent ODE learned from vectorized (static) persistence diagrams and show that a combination of recent stability results for persistent homology justifies this modeling choice. Various (ablation) experiments not only demonstrate the relevance of each model component but provide compelling empirical evidence that our proposed model - $\textit{Neural Persistence Dynamics}$ - substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
Related papers
- Information theory for data-driven model reduction in physics and biology [0.0]
We develop a systematic approach based on the information bottleneck to identify the relevant variables.
We show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions.
It provides a firm foundation to construct interpretable deep learning tools that perform model reduction.
arXiv Detail & Related papers (2023-12-11T18:39:05Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
We develop a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters.
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model.
arXiv Detail & Related papers (2022-11-23T17:42:53Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
We propose a self-supervised solution to the problem of learning to model how the world changes as time elapses.
Our model learns modality-agnostic functions to predict forward and backward in time, which must undo each other when composed.
We apply the learned dynamics model without further training to various tasks, such as predicting future action and temporally ordering sets of images.
arXiv Detail & Related papers (2021-01-07T02:41:32Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.