IAEmu: Learning Galaxy Intrinsic Alignment Correlations
- URL: http://arxiv.org/abs/2504.05235v1
- Date: Mon, 07 Apr 2025 16:19:50 GMT
- Title: IAEmu: Learning Galaxy Intrinsic Alignment Correlations
- Authors: Sneh Pandya, Yuanyuan Yang, Nicholas Van Alfen, Jonathan Blazek, Robin Walters,
- Abstract summary: We introduce IAEmu, a neural network-based emulator that predicts the galaxy position-position ($xi$), position-orientation ($omega$), and orientation-orientation ($eta$) correlation functions.<n>Compared to simulations, IAEmu achieves 3% average error for $xi$ and 5% for $omega$, while capturing $eta$ without overfitting.<n>IAEmu is a powerful surrogate model for galaxy bias and IA studies with direct applications to Stage IV weak lensing surveys.
- Score: 16.805775045014578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intrinsic alignments (IA) of galaxies, a key contaminant in weak lensing analyses, arise from correlations in galaxy shapes driven by tidal interactions and galaxy formation processes. Accurate IA modeling is essential for robust cosmological inference, but current approaches rely on perturbative methods that break down on nonlinear scales or on expensive simulations. We introduce IAEmu, a neural network-based emulator that predicts the galaxy position-position ($\xi$), position-orientation ($\omega$), and orientation-orientation ($\eta$) correlation functions and their uncertainties using mock catalogs based on the halo occupation distribution (HOD) framework. Compared to simulations, IAEmu achieves ~3% average error for $\xi$ and ~5% for $\omega$, while capturing the stochasticity of $\eta$ without overfitting. The emulator provides both aleatoric and epistemic uncertainties, helping identify regions where predictions may be less reliable. We also demonstrate generalization to non-HOD alignment signals by fitting to IllustrisTNG hydrodynamical simulation data. As a fully differentiable neural network, IAEmu enables $\sim$10,000$\times$ speed-ups in mapping HOD parameters to correlation functions on GPUs, compared to CPU-based simulations. This acceleration facilitates inverse modeling via gradient-based sampling, making IAEmu a powerful surrogate model for galaxy bias and IA studies with direct applications to Stage IV weak lensing surveys.
Related papers
- ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model [51.83639270669481]
Unsupervised anomaly detection in hyperspectral images (HSI) aims to detect unknown targets from backgrounds.
HSI studies are hindered by steep computational costs due to the high-dimensional property of HSI and dense sampling-based training paradigm.
We propose an Asymmetrical Consensus State Space Model (ACMamba) to significantly reduce computational costs without compromising accuracy.
arXiv Detail & Related papers (2025-04-16T05:33:42Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.<n>Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.<n>Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Cosmological Analysis with Calibrated Neural Quantile Estimation and Approximate Simulators [0.0]
We introduce a new Simulation-Based Inference ( SBI) method that leverages a large number of approximate simulations for training and a small number of high-fidelity simulations for calibration.
As a proof of concept, we demonstrate that cosmological parameters can be inferred at field level from projected 2-dim dark matter density maps up to $k_rm maxsim1.5,h$/Mpc at $z=0$.
The calibrated posteriors closely match those obtained by directly training on $sim104$ expensive Particle-Particle (PP) simulations, but at a fraction of the computational cost
arXiv Detail & Related papers (2024-11-22T05:53:46Z) - Geometric deep learning for galaxy-halo connection: a case study for galaxy intrinsic alignments [1.2231689895452238]
We propose a Deep Generative Model trained on the IllustrisTNG-100 simulation to sample 3D galaxy shapes and orientations.
The model is able to learn and predict features such as galaxy orientations that are statistically consistent with the reference simulation.
arXiv Detail & Related papers (2024-09-27T13:55:10Z) - COmoving Computer Acceleration (COCA): $N$-body simulations in an emulated frame of reference [0.0]
We introduce COmoving Computer Acceleration (COCA), a hybrid framework interfacing machine learning and $N$-body simulations.<n>The correct physical equations of motion are solved in an emulated frame of reference, so that any emulation error is corrected by design.<n>COCA efficiently reduces emulation errors in particle trajectories, requiring far fewer force evaluations than running the corresponding simulation without ML.
arXiv Detail & Related papers (2024-09-03T17:27:12Z) - Learning Galaxy Intrinsic Alignment Correlations [16.805775045014578]
The intrinsic alignments (IA) of galaxies represent the correlation of galaxy shapes due to gravitational tidal interactions and galaxy formation processes.
We present a deep learning approach to emulate galaxy position-position, position-orientation, and orientation-orientation correlation function measurements and uncertainties.
arXiv Detail & Related papers (2024-04-21T16:16:56Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment.
This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics.
arXiv Detail & Related papers (2024-03-05T23:12:47Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials [25.091146216183144]
Active learning uses biased or unbiased molecular dynamics to generate candidate pools.
Existing biased and unbiased MD-simulation methods are prone to miss either rare events or extrapolative regions.
This work demonstrates that MD, when biased by the MLIP's energy uncertainty, simultaneously captures extrapolative regions and rare events.
arXiv Detail & Related papers (2023-12-03T14:39:14Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Satellite galaxy abundance dependency on cosmology in Magneticum
simulations [101.18253437732933]
We build an emulator of satellite abundance based on cosmological parameters.
We find that $A$ and $beta$ depend on cosmological parameters, even if weakly.
We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO) and non-radiative simulations.
arXiv Detail & Related papers (2021-10-11T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.