PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks
- URL: http://arxiv.org/abs/2504.05248v1
- Date: Mon, 07 Apr 2025 16:34:57 GMT
- Title: PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks
- Authors: Marius Almanstötter, Roman Vetter, Dagmar Iber,
- Abstract summary: Physics-Informed Neural Networks (PINNs) have emerged as effective tools for solving such problems.<n>We introduce PINNverse, a training paradigm that addresses these limitations by reformulating the learning process as a constrained differential optimization problem.<n>We demonstrate robust and accurate parameter estimation from noisy data in four classical ODE and PDE models from physics and biology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter estimation for differential equations from measured data is an inverse problem prevalent across quantitative sciences. Physics-Informed Neural Networks (PINNs) have emerged as effective tools for solving such problems, especially with sparse measurements and incomplete system information. However, PINNs face convergence issues, stability problems, overfitting, and complex loss function design. Here we introduce PINNverse, a training paradigm that addresses these limitations by reformulating the learning process as a constrained differential optimization problem. This approach achieves a dynamic balance between data loss and differential equation residual loss during training while preventing overfitting. PINNverse combines the advantages of PINNs with the Modified Differential Method of Multipliers to enable convergence on any point on the Pareto front. We demonstrate robust and accurate parameter estimation from noisy data in four classical ODE and PDE models from physics and biology. Our method enables accurate parameter inference also when the forward problem is expensive to solve.
Related papers
- Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
We propose a novel approach, stiff transfer learning for physics-informed neural networks (STL-PINNs) to tackle stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)<n>Our methodology involves training a Multi-Head-PINN in a low-stiff regime, and obtaining the final solution in a high stiff regime by transfer learning.<n>This addresses the failure modes related to stiffness in PINNs while maintaining computational efficiency by computing "one-shot" solutions.
arXiv Detail & Related papers (2025-01-28T20:27:38Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks [8.487185704099925]
Physics-informed neural networks (PINNs) have emerged as a promising deep learning method.
PINNs are difficult to train and often require a careful tuning of loss weights when data and physics loss functions are combined.
arXiv Detail & Related papers (2021-05-03T13:47:45Z) - Extreme Theory of Functional Connections: A Physics-Informed Neural
Network Method for Solving Parametric Differential Equations [0.0]
We present a physics-informed method for solving problems involving parametric differential equations (DEs) called X-TFC.
X-TFC differs from PINN and Deep-TFC; whereas PINN and Deep-TFC use a deep-NN, X-TFC uses a single-layer NN, or more precisely, an Extreme Learning Machine, ELM.
arXiv Detail & Related papers (2020-05-15T22:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.