Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models
- URL: http://arxiv.org/abs/2504.05258v1
- Date: Mon, 07 Apr 2025 16:51:45 GMT
- Title: Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models
- Authors: Adrián Bazaga, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert,
- Abstract summary: Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks.<n>They struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships.<n>We introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection.
- Score: 21.579319926212296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks. However, they struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships. These capabilities are critical for applications including question answering, scheduling, and historical analysis. In this paper, we introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection. Our approach leverages test-time scaling to extend the length of reasoning traces, enabling models to capture complex temporal dependencies more effectively. This strategy not only boosts reasoning accuracy but also improves the traceability of the inference process. Experimental results demonstrate state-of-the-art performance across multiple benchmarks, including out-of-distribution test sets, and reveal that TISER enables smaller open-source models to surpass larger closed-weight models on challenging temporal reasoning tasks.
Related papers
- Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.
We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.
For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - On the Temporal Question-Answering Capabilities of Large Language Models Over Anonymized Data [1.2979906794584584]
The applicability of Large Language Models (LLMs) in temporal reasoning tasks over data that is not present during training is still a field that remains to be explored.
In this paper we work on this topic, focusing on structured and semi-structured anonymized data.
We identify and examined seventeen common temporal reasoning tasks in natural language, focusing on their algorithmic components.
arXiv Detail & Related papers (2025-04-10T10:48:42Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
Recent studies have shown that making a model spend more time thinking through longer Chain of Thoughts (CoTs) enables it to gain significant improvements in complex reasoning tasks.<n>We explore whether scaling with longer CoTs can indeed impair the reasoning performance of Large Language Models (LLMs) in certain domains.
arXiv Detail & Related papers (2025-02-25T10:48:05Z) - Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - ChronoSense: Exploring Temporal Understanding in Large Language Models with Time Intervals of Events [0.20132569095596248]
We present ChronoSense, a new benchmark for evaluating Large Language Models' temporal understanding.
We assess the performance of seven recent LLMs using this benchmark and the results indicate that models handle Allen relations, even symmetrical ones, quite differently.
Overall, the models' low performance highlights the need for improved temporal understanding in LLMs.
arXiv Detail & Related papers (2025-01-06T14:27:41Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE)
This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE.
arXiv Detail & Related papers (2024-06-04T16:42:17Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.<n>However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - TRAM: Benchmarking Temporal Reasoning for Large Language Models [12.112914393948415]
We introduce TRAM, a temporal reasoning benchmark composed of ten datasets.
We evaluate popular language models like GPT-4 and Llama2 in zero-shot and few-shot scenarios.
Our findings indicate that the best-performing model lags significantly behind human performance.
arXiv Detail & Related papers (2023-10-02T00:59:07Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.