What We Do Not Know: GPT Use in Business and Management
- URL: http://arxiv.org/abs/2504.05273v1
- Date: Mon, 07 Apr 2025 17:11:53 GMT
- Title: What We Do Not Know: GPT Use in Business and Management
- Authors: Tammy Mackenzie, Branislav Radeljic, Leslie Salgado, Animesh Paul, Rubaina Khan, Aizhan Tursunbayeva, Natalie Perez, Sreyoshi Bhaduri,
- Abstract summary: This systematic review examines peer-reviewed studies on application of GPT in business management.<n>We provide a description of current research and identify knowledge gaps on the use of GPT in business.<n>We discuss gaps in knowledge of GPT potential consequences on employment, productivity, environmental costs, oppression, and small businesses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This systematic review examines peer-reviewed studies on application of GPT in business management, revealing significant knowledge gaps. Despite identifying interesting research directions such as best practices, benchmarking, performance comparisons, social impacts, our analysis yields only 42 relevant studies for the 22 months since its release. There are so few studies looking at a particular sector or subfield that management researchers, business consultants, policymakers, and journalists do not yet have enough information to make well-founded statements on how GPT is being used in businesses. The primary contribution of this paper is a call to action for further research. We provide a description of current research and identify knowledge gaps on the use of GPT in business. We cover the management subfields of finance, marketing, human resources, strategy, operations, production, and analytics, excluding retail and sales. We discuss gaps in knowledge of GPT potential consequences on employment, productivity, environmental costs, oppression, and small businesses. We propose how management consultants and the media can help fill those gaps. We call for practical work on business control systems as they relate to existing and foreseeable AI-related business challenges. This work may be of interest to managers, to management researchers, and to people working on AI in society.
Related papers
- Addressing Bias in Generative AI: Challenges and Research Opportunities in Information Management [3.9775368901759207]
Generative AI technologies have transformed information management systems but introduced substantial biases that can compromise their effectiveness in informing business decision-making.<n>This challenge presents information management scholars with a unique opportunity to advance the field by identifying and addressing these biases across extensive applications of Large Language Models (LLMs)<n>By incorporating ethical considerations, policy implications, and sociotechnical perspectives, we focus on developing a framework that covers major stakeholders of Generative AI systems, proposing key research questions, and inspiring discussion.
arXiv Detail & Related papers (2025-01-22T10:14:31Z) - The Transformative Impact of AI and Deep Learning in Business: A Literature Review [0.0]
This paper aims to review the radical role of AI and deep learning in various functional areas of the business.
It covers material applications in the healthcare sector, the retail and manufacturing industry, agriculture and farming, and finance.
arXiv Detail & Related papers (2024-10-30T20:35:03Z) - The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends [64.99423243200296]
Conversation Analysis (CA) strives to uncover and analyze critical information from conversation data.
In this paper, we perform a thorough review and systematize CA task to summarize the existing related work.
We derive four key steps of CA from conversation scene reconstruction, to in-depth attribution analysis, and then to performing targeted training, finally generating conversations.
arXiv Detail & Related papers (2024-09-21T16:52:43Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Towards Self-organizing Personal Knowledge Assistants in Evolving
Corporate Memories [3.555368338253582]
This paper presents a retrospective overview of a decade of research in our department towards self-organizing personal knowledge assistants.
Our research is typically inspired by real-world problems and often conducted in interdisciplinary collaborations with research and industry partners.
arXiv Detail & Related papers (2023-08-03T12:48:32Z) - A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics [46.025337523478825]
Talent analytics has emerged as a promising field in applied data science for human resource management.
Recent development of Big Data and Artificial Intelligence techniques have revolutionized human resource management.
arXiv Detail & Related papers (2023-07-03T07:53:20Z) - Is GPT-4 a Good Data Analyst? [67.35956981748699]
We consider GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains.
We design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4.
Experimental results show that GPT-4 can achieve comparable performance to humans.
arXiv Detail & Related papers (2023-05-24T11:26:59Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Knowledge Graph Induction enabling Recommending and Trend Analysis: A
Corporate Research Community Use Case [11.907821975089064]
We present a use case of how a corporate research community, IBM Research, utilizes Semantic Web technologies to induce a unified Knowledge Graph.
We identify a set of common patterns for exploiting the induced knowledge and exposed them as APIs.
Those patterns were born out of user research which identified the most valuable use cases or user pain points to be alleviated.
arXiv Detail & Related papers (2022-07-11T20:51:28Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.