The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends
- URL: http://arxiv.org/abs/2409.14195v1
- Date: Sat, 21 Sep 2024 16:52:43 GMT
- Title: The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends
- Authors: Xinghua Zhang, Haiyang Yu, Yongbin Li, Minzheng Wang, Longze Chen, Fei Huang,
- Abstract summary: Conversation Analysis (CA) strives to uncover and analyze critical information from conversation data.
In this paper, we perform a thorough review and systematize CA task to summarize the existing related work.
We derive four key steps of CA from conversation scene reconstruction, to in-depth attribution analysis, and then to performing targeted training, finally generating conversations.
- Score: 64.99423243200296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of large language models (LLMs), a vast amount of conversation logs will be accumulated thanks to the rapid development trend of language UI. Conversation Analysis (CA) strives to uncover and analyze critical information from conversation data, streamlining manual processes and supporting business insights and decision-making. The need for CA to extract actionable insights and drive empowerment is becoming increasingly prominent and attracting widespread attention. However, the lack of a clear scope for CA leads to a dispersion of various techniques, making it difficult to form a systematic technical synergy to empower business applications. In this paper, we perform a thorough review and systematize CA task to summarize the existing related work. Specifically, we formally define CA task to confront the fragmented and chaotic landscape in this field, and derive four key steps of CA from conversation scene reconstruction, to in-depth attribution analysis, and then to performing targeted training, finally generating conversations based on the targeted training for achieving the specific goals. In addition, we showcase the relevant benchmarks, discuss potential challenges and point out future directions in both industry and academia. In view of current advancements, it is evident that the majority of efforts are still concentrated on the analysis of shallow conversation elements, which presents a considerable gap between the research and business, and with the assist of LLMs, recent work has shown a trend towards research on causality and strategic tasks which are sophisticated and high-level. The analyzed experiences and insights will inevitably have broader application value in business operations that target conversation logs.
Related papers
- CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization [7.234196390284036]
This article summarizes the research on Transformer-based abstractive summarization for English dialogues.
We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality)
We find that while some challenges, like language, have seen considerable progress, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities.
arXiv Detail & Related papers (2024-06-11T17:30:22Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence [0.0]
Large language models (LLMs) have been shown to present an unprecedented opportunity to scale up data analytics in the humanities and social sciences.
We build on mixed methods quantitizing and converting design principles, and feature analysis from linguistics, to transparently integrate human expertise and machine scalability.
The approach is discussed and demonstrated in over a dozen LLM-assisted case studies, covering 9 diverse languages, multiple disciplines and tasks.
arXiv Detail & Related papers (2023-09-24T14:21:50Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
We provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues.
We discuss challenges that meet the real-world application needs but require a greater research focus in the future.
arXiv Detail & Related papers (2023-05-04T11:38:49Z) - Conversational Agents: Theory and Applications [0.6853165736531939]
We consider the concept of embodied conversational agents, briefly reviewing aspects such as character animation and speech processing.
The many different approaches for representing dialogue in CAs are discussed in some detail, along with methods for evaluating such agents.
A brief historical overview is given, followed by an extensive overview of various applications, especially in the fields of health and education.
arXiv Detail & Related papers (2022-02-07T13:48:14Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
We propose a structured approach that controls the intended content of system responses by introducing coarse-grained keywords.
We also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate.
arXiv Detail & Related papers (2020-02-04T09:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.