論文の概要: The challenge of uncertainty quantification of large language models in medicine
- arxiv url: http://arxiv.org/abs/2504.05278v1
- Date: Mon, 07 Apr 2025 17:24:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:48.108824
- Title: The challenge of uncertainty quantification of large language models in medicine
- Title(参考訳): 医学における大規模言語モデルの不確実性定量化の課題
- Authors: Zahra Atf, Seyed Amir Ahmad Safavi-Naini, Peter R. Lewis, Aref Mahjoubfar, Nariman Naderi, Thomas R. Savage, Ali Soroush,
- Abstract要約: 本研究では,医学応用のための大規模言語モデル(LLM)の不確実性定量化について検討する。
私たちの研究は、不確実性を障壁としてではなく、AI設計に対する動的で反射的なアプローチを招待する知識の不可欠な部分として捉えています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates uncertainty quantification in large language models (LLMs) for medical applications, emphasizing both technical innovations and philosophical implications. As LLMs become integral to clinical decision-making, accurately communicating uncertainty is crucial for ensuring reliable, safe, and ethical AI-assisted healthcare. Our research frames uncertainty not as a barrier but as an essential part of knowledge that invites a dynamic and reflective approach to AI design. By integrating advanced probabilistic methods such as Bayesian inference, deep ensembles, and Monte Carlo dropout with linguistic analysis that computes predictive and semantic entropy, we propose a comprehensive framework that manages both epistemic and aleatoric uncertainties. The framework incorporates surrogate modeling to address limitations of proprietary APIs, multi-source data integration for better context, and dynamic calibration via continual and meta-learning. Explainability is embedded through uncertainty maps and confidence metrics to support user trust and clinical interpretability. Our approach supports transparent and ethical decision-making aligned with Responsible and Reflective AI principles. Philosophically, we advocate accepting controlled ambiguity instead of striving for absolute predictability, recognizing the inherent provisionality of medical knowledge.
- Abstract(参考訳): 本研究では、医学応用のための大規模言語モデル(LLM)における不確実性定量化について検討し、技術的革新と哲学的含意の両方を強調した。
LLMが臨床的意思決定に不可欠なものとなるにつれ、信頼性、安全、倫理的なAI支援医療を保証する上で、正確かつ不確実性のあるコミュニケーションが不可欠である。
私たちの研究は、不確実性を障壁としてではなく、AI設計に対する動的で反射的なアプローチを招待する知識の不可欠な部分として捉えています。
ベイズ推定や深層アンサンブル,モンテカルロのドロップアウトといった高度な確率的手法を,予測的エントロピーと意味論的エントロピーを計算する言語解析と統合することにより,疫学とアレタリック不確実性の両方を管理する包括的枠組みを提案する。
このフレームワークには、プロプライエタリなAPIの制限に対処するための代理モデリング、コンテキスト改善のためのマルチソースデータ統合、継続学習とメタ学習による動的キャリブレーションが含まれている。
説明可能性には不確実性マップと信頼性メトリクスが組み込まれ、ユーザの信頼と臨床解釈性をサポートする。
当社のアプローチは,ResponsibleとReflective AIの原則に沿った,透明で倫理的な意思決定を支援するものです。
哲学的には、絶対的な予測可能性を求めるのではなく、制御されたあいまいさを受け入れることを提唱し、医学知識の本質的な特質を認識する。
関連論文リスト
- Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - Addressing Intersectionality, Explainability, and Ethics in AI-Driven Diagnostics: A Rebuttal and Call for Transdiciplinary Action [0.30693357740321775]
人工知能の医療診断への統合の増大は、その倫理的および実践的な意味を批判的に検証する必要がある。
本稿は、AIによる診断が多様な人口に公平かつ倫理的に役立っていることを保証するために、正確さと公正性、プライバシ、傾きのバランスをとるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-15T00:00:01Z) - From Aleatoric to Epistemic: Exploring Uncertainty Quantification Techniques in Artificial Intelligence [19.369216778200034]
不確実性定量化(英: Uncertainty Quantification、UQ)は、人工知能(AI)システムにおいて重要な側面である。
本稿では,AIにおける不確実性定量化技術の進化について概説する。
様々な分野におけるUQの多様な応用について検討し、意思決定、予測精度、システムの堅牢性への影響を強調した。
論文 参考訳(メタデータ) (2025-01-05T23:14:47Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
臨床リスク予測のための説明可能なモデルの開発状況
外部検証の必要性と多様な解釈可能性メソッドの組み合わせを強調している。
臨床リスク予測における説明可能性へのエンドツーエンドアプローチは成功に不可欠である。
論文 参考訳(メタデータ) (2023-08-16T14:51:51Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。