Seeking and Updating with Live Visual Knowledge
- URL: http://arxiv.org/abs/2504.05288v2
- Date: Tue, 01 Jul 2025 02:17:31 GMT
- Title: Seeking and Updating with Live Visual Knowledge
- Authors: Mingyang Fu, Yuyang Peng, Dongping Chen, Zetong Zhou, Benlin Liu, Yao Wan, Zhou Zhao, Philip S. Yu, Ranjay Krishna,
- Abstract summary: We introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data.<n>LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries.<n>Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff.
- Score: 75.25025869244837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
Related papers
- Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
This paper introduces Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism.<n>In this way, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning.<n>It greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for.
arXiv Detail & Related papers (2025-01-18T17:43:05Z) - VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
Video Quality Assessment (VQA) is a classic field in low-level visual perception.<n>Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can enhance markedly low-level visual quality evaluation.<n>We introduce the VQA2 Instruction dataset - the first visual question answering instruction dataset that focuses on video quality assessment.<n>The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos.
arXiv Detail & Related papers (2024-11-06T09:39:52Z) - SimpsonsVQA: Enhancing Inquiry-Based Learning with a Tailored Dataset [11.729464930866483]
"SimpsonsVQA" is a novel dataset for VQA derived from The Simpsons TV show.
It is designed to address not only the traditional VQA task but also to identify irrelevant questions related to images.
SimpsonsVQA contains approximately 23K images, 166K QA pairs, and 500K judgments.
arXiv Detail & Related papers (2024-10-30T02:30:40Z) - LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models [53.64461404882853]
Video quality assessment (VQA) algorithms are needed to monitor and optimize the quality of streaming videos.
Here, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel visual modeling strategy for quality-aware feature extraction.
arXiv Detail & Related papers (2024-08-26T04:29:52Z) - Targeted Visual Prompting for Medical Visual Question Answering [3.600327818936722]
multimodal large language models (MLLMs) have emerged as an alternative to classical model architectures.
Simple visual errors cast doubt on the actual visual understanding abilities of these models.
This paper introduces targeted visual prompting to equip MLLMs with region-based questioning capabilities.
arXiv Detail & Related papers (2024-08-06T08:58:20Z) - EchoSight: Advancing Visual-Language Models with Wiki Knowledge [39.02148880719576]
We introduce EchoSight, a novel framework for knowledge-based Visual Question Answering.
To strive for high-performing retrieval, EchoSight first searches wiki articles by using visual-only information.
Our experimental results on the Encyclopedic VQA and InfoSeek datasets demonstrate that EchoSight establishes new state-of-the-art results in knowledge-based VQA.
arXiv Detail & Related papers (2024-07-17T16:55:42Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Disentangling Knowledge-based and Visual Reasoning by Question Decomposition in KB-VQA [19.6585442152102]
We study the Knowledge-Based visual question-answering problem, for which given a question, the models need to ground it into the visual modality to find the answer.
Our study shows that replacing a complex question with several simpler questions helps to extract more relevant information from the image.
arXiv Detail & Related papers (2024-06-27T02:19:38Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Towards Transparency: Exploring LLM Trainings Datasets through Visual Topic Modeling and Semantic Frame [0.0]
We present Bunka, a software that leverages AI and Cognitive Science to improve the refinement of textual datasets.
We show how Topic Modeling coupled with 2-dimensional Cartography can increase the transparency of datasets.
Lastly, we show how using Frame Analysis can give insights into existing biases in the training corpus.
arXiv Detail & Related papers (2024-06-03T18:44:13Z) - MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering [58.92057773071854]
We introduce MTVQA, the first benchmark featuring high-quality human expert annotations across 9 diverse languages.
MTVQA is the first benchmark featuring high-quality human expert annotations across 9 diverse languages.
arXiv Detail & Related papers (2024-05-20T12:35:01Z) - Visual Data-Type Understanding does not emerge from Scaling
Vision-Language Models [31.69213233651326]
We introduce the novel task of Visual Data-Type Identification.
An extensive zero-shot evaluation of 39 vision-language models (VLMs) shows a nuanced performance landscape.
arXiv Detail & Related papers (2023-10-12T17:59:30Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
This paper proposes a new framework to enhance the fine-grained image understanding abilities of MLLMs.
We present a new method for constructing the instruction tuning dataset at a low cost by leveraging annotations in existing datasets.
We show that our model exhibits a 5.2% accuracy improvement over Qwen-VL and surpasses the accuracy of Kosmos-2 by 24.7%.
arXiv Detail & Related papers (2023-10-01T05:53:15Z) - Understanding Video Scenes through Text: Insights from Text-based Video
Question Answering [40.01623654896573]
This paper explores two recently introduced datasets, NewsVideoQA and M4-ViteVQA, which aim to address video question answering based on textual content.
We provide an analysis of the formulation of these datasets on various levels, exploring the degree of visual understanding and multi-frame comprehension required for answering the questions.
arXiv Detail & Related papers (2023-09-04T06:11:00Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Learning without Forgetting for Vision-Language Models [86.53237963364754]
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world.<n>Recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations.<n>We propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting.
arXiv Detail & Related papers (2023-05-30T17:59:32Z) - TAG: Boosting Text-VQA via Text-aware Visual Question-answer Generation [55.83319599681002]
Text-VQA aims at answering questions that require understanding the textual cues in an image.
We develop a new method to generate high-quality and diverse QA pairs by explicitly utilizing the existing rich text available in the scene context of each image.
arXiv Detail & Related papers (2022-08-03T02:18:09Z) - Structured Two-stream Attention Network for Video Question Answering [168.95603875458113]
We propose a Structured Two-stream Attention network, namely STA, to answer a free-form or open-ended natural language question.
First, we infer rich long-range temporal structures in videos using our structured segment component and encode text features.
Then, our structured two-stream attention component simultaneously localizes important visual instance, reduces the influence of background video and focuses on the relevant text.
arXiv Detail & Related papers (2022-06-02T12:25:52Z) - Achieving Human Parity on Visual Question Answering [67.22500027651509]
The Visual Question Answering (VQA) task utilizes both visual image and language analysis to answer a textual question with respect to an image.
This paper describes our recent research of AliceMind-MMU that obtains similar or even slightly better results than human beings does on VQA.
This is achieved by systematically improving the VQA pipeline including: (1) pre-training with comprehensive visual and textual feature representation; (2) effective cross-modal interaction with learning to attend; and (3) A novel knowledge mining framework with specialized expert modules for the complex VQA task.
arXiv Detail & Related papers (2021-11-17T04:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.