Targeted Visual Prompting for Medical Visual Question Answering
- URL: http://arxiv.org/abs/2408.03043v1
- Date: Tue, 6 Aug 2024 08:58:20 GMT
- Title: Targeted Visual Prompting for Medical Visual Question Answering
- Authors: Sergio Tascon-Morales, Pablo Márquez-Neila, Raphael Sznitman,
- Abstract summary: multimodal large language models (MLLMs) have emerged as an alternative to classical model architectures.
Simple visual errors cast doubt on the actual visual understanding abilities of these models.
This paper introduces targeted visual prompting to equip MLLMs with region-based questioning capabilities.
- Score: 3.600327818936722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With growing interest in recent years, medical visual question answering (Med-VQA) has rapidly evolved, with multimodal large language models (MLLMs) emerging as an alternative to classical model architectures. Specifically, their ability to add visual information to the input of pre-trained LLMs brings new capabilities for image interpretation. However, simple visual errors cast doubt on the actual visual understanding abilities of these models. To address this, region-based questions have been proposed as a means to assess and enhance actual visual understanding through compositional evaluation. To combine these two perspectives, this paper introduces targeted visual prompting to equip MLLMs with region-based questioning capabilities. By presenting the model with both the isolated region and the region in its context in a customized visual prompt, we show the effectiveness of our method across multiple datasets while comparing it to several baseline models. Our code and data are available at https://github.com/sergiotasconmorales/locvqallm.
Related papers
- Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities.
Visual prompting has emerged for more fine-grained and free-form visual instructions.
This paper focuses on visual prompting, prompt generation, compositional reasoning, and prompt learning.
arXiv Detail & Related papers (2024-09-05T08:47:34Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-Former is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM.
X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders.
It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM.
arXiv Detail & Related papers (2024-07-18T18:39:54Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment [31.688373463643373]
Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions.
We present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage.
We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%).
arXiv Detail & Related papers (2024-02-21T06:34:46Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
It is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources.
We present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge.
We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation.
arXiv Detail & Related papers (2022-11-10T21:44:33Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
We propose a proxy task to learn visual representations over image-caption pairs.
ICMLM consists in predicting masked words in captions by relying on visual cues.
Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations.
arXiv Detail & Related papers (2020-08-04T08:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.