論文の概要: EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design
- arxiv url: http://arxiv.org/abs/2504.05370v1
- Date: Mon, 07 Apr 2025 17:49:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:18.539154
- Title: EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design
- Title(参考訳): EduPlanner: カスタマイズおよびインテリジェントな教育設計のためのLLMベースのマルチエージェントシステム
- Authors: Xueqiao Zhang, Chao Zhang, Jianwen Sun, Jun Xiao, Yi Yang, Yawei Luo,
- Abstract要約: 大規模言語モデル(LLM)は、人工知能(AGI)時代において、かなり高度なスマート教育を行っている。
EduPlannerはLLMベースのマルチエージェントシステムであり、評価エージェント、エージェント、質問アナリストから構成される。
EduPlannerは、カリキュラムと学習活動のためのカスタマイズされたインテリジェントな教育設計を生成する。
- 参考スコア(独自算出の注目度): 31.595008625025134
- License:
- Abstract: Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: (1) Customized Generation: generating niche-targeted teaching content based on students' varying learning abilities and states, and (2) Intelligent Optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multi-agent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. Additionally, we introduce the CIDDP, an LLM-based five-dimensional evaluation module encompassing clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. Our code is publicly available at https://github.com/Zc0812/Edu_Planner
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AGI)時代において、かなり高度なスマート教育を行っている。
有望な応用は、カリキュラムと学習活動のための指導設計の自動一般化であり、(1)カスタマイズされた生成:生徒の様々な学習能力と状態に基づいてニッチな教育内容を生成すること、(2)知的最適化:学習効率やテストスコアからのフィードバックに基づいてコンテンツを反復的に最適化することである。
現在、1つの大きなLLMはプロセス全体を効果的に管理することができず、インテリジェントな教育計画の設計に挑戦している。
これらの課題に対処するために,評価エージェント,オプティマイザエージェント,質問分析器からなるLLMベースのマルチエージェントシステムであるEduPlannerを開発した。
数学の授業を例に挙げたEduPlannerは、学生グループの背景数学知識を正確にモデル化し、学生の知識レベルと学習能力に応じてカリキュラムと学習活動の指導的デザインをパーソナライズするために、新しいスキル・トレー構造を採用している。
さらに,LLMに基づく5次元評価モジュールであるCIDDPを導入し,数学の授業計画品質とブートストラップ知能最適化を包括的に評価する。
GSM8KとAlgebraデータセットで実施された実験は、EduPlannerがカリキュラムと学習活動の教育設計の評価と最適化に優れていることを示している。
アブレーション研究は、フレームワーク内の各コンポーネントの重要性と有効性をさらに検証する。
私たちのコードはhttps://github.com/Zc0812/Edu_Plannerで公開されています。
関連論文リスト
- LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
インストラクションチューニングは、大きな言語モデルにオープンドメイン命令と人間優先応答を合わせることを目的としている。
学生のLLMの追従が難しい命令を選択するために,TAPIR(Task-Aware Curriculum Planning for Instruction Refinement)を導入する。
学生の能力のバランスをとるために、トレーニングセット内のタスク分布は、対応するタスクに応じて自動的に調整された応答で調整される。
論文 参考訳(メタデータ) (2024-05-22T08:38:26Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for
Language Models [153.14575887549088]
GLAN(Generalized Instruction Tuning)は,Large Language Models(LLM)の汎用的かつスケーラブルなチューニング手法である。
GLANは、人間の知識と能力の事前分類を入力として利用し、あらゆる分野にわたる大規模な合成指導データを生成する。
サイラバスの全クラスセッションで詳述された、きめ細かい重要な概念により、私たちは、人間の知識とスキルの全範囲にわたって幅広い範囲をカバーする多様な命令を生成できる。
論文 参考訳(メタデータ) (2024-02-20T15:00:35Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Scaling Evidence-based Instructional Design Expertise through Large
Language Models [0.0]
本稿では,大規模言語モデル(LLM),特にGPT-4を教育設計の分野で活用することを検討する。
本研究は,エビデンスに基づく教育設計の専門知識のスケールアップに着目し,理論教育学と実践実践のギャップを埋めることを目的としている。
我々は,AIによるコンテンツ生成のメリットと限界について論じ,教育資料の品質確保に人的監督が必要であることを強調した。
論文 参考訳(メタデータ) (2023-05-31T17:54:07Z) - Automated Graph Self-supervised Learning via Multi-teacher Knowledge
Distillation [43.903582264697974]
本稿では,各ノードのインスタンスレベルの自己教師型学習戦略を自動的に,適応的に,動的に学習する方法について検討する。
自動グラフ自己監視学習(AGSSL)のための新しい多教師知識蒸留フレームワークを提案する。
8つのデータセットの実験では、AGSSLは複数のプレテキストタスクの恩恵を受けることができ、対応する個々のタスクを上回っている。
論文 参考訳(メタデータ) (2022-10-05T08:39:13Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。