A Behavior-Based Knowledge Representation Improves Prediction of Players' Moves in Chess by 25%
- URL: http://arxiv.org/abs/2504.05425v1
- Date: Mon, 07 Apr 2025 18:49:00 GMT
- Title: A Behavior-Based Knowledge Representation Improves Prediction of Players' Moves in Chess by 25%
- Authors: Benny Skidanov, Daniel Erbesfeld, Gera Weiss, Achiya Elyasaf,
- Abstract summary: This paper proposes a novel approach combining expert knowledge with machine learning techniques to predict human players' next moves.<n>By applying feature engineering grounded in domain expertise, we seek to uncover the patterns in the moves of intermediate-level chess players.<n>Our methodology offers a promising framework for anticipating human behavior, advancing both the fields of AI and human-computer interaction.
- Score: 2.232417329532027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting player behavior in strategic games, especially complex ones like chess, presents a significant challenge. The difficulty arises from several factors. First, the sheer number of potential outcomes stemming from even a single position, starting from the initial setup, makes forecasting a player's next move incredibly complex. Second, and perhaps even more challenging, is the inherent unpredictability of human behavior. Unlike the optimized play of engines, humans introduce a layer of variability due to differing playing styles and decision-making processes. Each player approaches the game with a unique blend of strategic thinking, tactical awareness, and psychological tendencies, leading to diverse and often unexpected actions. This stylistic variation, combined with the capacity for creativity and even irrational moves, makes predicting human play difficult. Chess, a longstanding benchmark of artificial intelligence research, has seen significant advancements in tools and automation. Engines like Deep Blue, AlphaZero, and Stockfish can defeat even the most skilled human players. However, despite their exceptional ability to outplay top-level grandmasters, predicting the moves of non-grandmaster players, who comprise most of the global chess community -- remains complicated for these engines. This paper proposes a novel approach combining expert knowledge with machine learning techniques to predict human players' next moves. By applying feature engineering grounded in domain expertise, we seek to uncover the patterns in the moves of intermediate-level chess players, particularly during the opening phase of the game. Our methodology offers a promising framework for anticipating human behavior, advancing both the fields of AI and human-computer interaction.
Related papers
- Human-aligned Chess with a Bit of Search [35.16633353273246]
Chess has long been a testbed for AI's quest to match human intelligence.
In this paper, we introduce Allie, a chess-playing AI designed to bridge the gap between artificial and human intelligence in this classic game.
arXiv Detail & Related papers (2024-10-04T19:51:03Z) - Maia-2: A Unified Model for Human-AI Alignment in Chess [10.577896749797485]
We propose a unified modeling approach for human-AI alignment in chess.
We introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions.
Our results pave the way for deeper insights into human decision-making and AI-guided teaching tools.
arXiv Detail & Related papers (2024-09-30T17:54:23Z) - Detecting Individual Decision-Making Style: Exploring Behavioral
Stylometry in Chess [4.793072503820555]
We present a transformer-based approach to behavioral stylometry in the context of chess.
Our method operates in a few-shot classification framework, and can correctly identify a player from among thousands of candidate players.
We consider more broadly what our resulting embeddings reveal about human style in chess, as well as the potential ethical implications.
arXiv Detail & Related papers (2022-08-02T11:18:16Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered.
Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome.
DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform.
arXiv Detail & Related papers (2022-06-30T15:53:19Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - From Motor Control to Team Play in Simulated Humanoid Football [56.86144022071756]
We train teams of physically simulated humanoid avatars to play football in a realistic virtual environment.
In a sequence of stages, players first learn to control a fully articulated body to perform realistic, human-like movements.
They then acquire mid-level football skills such as dribbling and shooting.
Finally, they develop awareness of others and play as a team, bridging the gap between low-level motor control at a timescale of milliseconds.
arXiv Detail & Related papers (2021-05-25T20:17:10Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Learning Models of Individual Behavior in Chess [4.793072503820555]
We develop highly accurate predictive models of individual human behavior in chess.
Our work demonstrates a way to bring AI systems into better alignment with the behavior of individual people.
arXiv Detail & Related papers (2020-08-23T18:24:21Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Aligning Superhuman AI with Human Behavior: Chess as a Model System [5.236087378443016]
We develop Maia, a customized version of Alpha-Zero trained on human chess games, that predicts human moves at a much higher accuracy than existing engines.
For a dual task of predicting whether a human will make a large mistake on the next move, we develop a deep neural network that significantly outperforms competitive baselines.
arXiv Detail & Related papers (2020-06-02T18:12:52Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
We design an AI for Mahjong, named Suphx, based on deep reinforcement learning with some newly introduced techniques.
Suphx has demonstrated stronger performance than most top human players in terms of stable rank.
This is the first time that a computer program outperforms most top human players in Mahjong.
arXiv Detail & Related papers (2020-03-30T16:18:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.