Ultrafast all-optical modulation of spatially structured photons
- URL: http://arxiv.org/abs/2504.05464v1
- Date: Mon, 07 Apr 2025 19:54:35 GMT
- Title: Ultrafast all-optical modulation of spatially structured photons
- Authors: Alicia Sit, Frédéric Bouchard, Nicolas Couture, Duncan England, Guillaume Thekkadath, Philip J. Bustard, Benjamin Sussman,
- Abstract summary: We study the capabilities of few-mode cross-phase modulation via the optical Kerr effect, using ultrafast pulses.<n>We observe a significant modulation in the spatial mode of structured photons on timescales $leq 1.3$ps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulating the structure of single photons in the ultrafast domain is enabling new quantum information processing technologies. At the picosecond timescale, quantum information can be processed before decoherence can occur. In this work, we study the capabilities of few-mode cross-phase modulation via the optical Kerr effect, using ultrafast pulses. We observe a significant modulation in the spatial mode of structured photons on timescales $\leq 1.3$~ps.
Related papers
- Terahertz electro-optic modulation of single photons [0.0]
manipulation of visible and near-infrared light at the single-photon level plays a key role in quantum communication systems.<n>We propose the use of terahertz(THz) electric fields as a pump source for electro-optic modulation of single photons in bulk media.
arXiv Detail & Related papers (2025-03-25T13:52:54Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Shaping Dynamical Casimir Photons [0.0]
Space-time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties.
We develop a microscopic theory that applies both to moving mirrors with surface profile and atomic array meta-mirrors with perturbed lattice configuration.
The proposed space-time dynamical Casimir effect can be interpreted as an induced dynamical asymmetry in the quantum vacuum.
arXiv Detail & Related papers (2021-05-10T17:00:59Z) - Fast Generation and Detection of Spatial Modes of Light using an
Acousto-Optic Modulator [62.997667081978825]
spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information.
Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask.
We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states.
We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
arXiv Detail & Related papers (2020-07-31T14:58:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Quantum optical synthesis in 2D time-frequency space [0.0]
Conventional optical synthesis relies on the Fourier transform of light fields between time and frequency domains in one-dimensional space.
We carry out an experimental demonstration by manipulating the two-photon probability distribution of a biphoton in two-dimensional time and frequency space.
Our approach opens up a new pathway to tailor the temporal characteristics of a biphoton wave packet with high dimensional quantum-mechanical treatment.
arXiv Detail & Related papers (2020-02-19T14:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.