Pretraining Language Models for Diachronic Linguistic Change Discovery
- URL: http://arxiv.org/abs/2504.05523v2
- Date: Wed, 09 Apr 2025 13:09:06 GMT
- Title: Pretraining Language Models for Diachronic Linguistic Change Discovery
- Authors: Elisabeth Fittschen, Sabrina Li, Tom Lippincott, Leshem Choshen, Craig Messner,
- Abstract summary: We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection.<n>We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices.<n>We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus.
- Score: 8.203894221271302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.
Related papers
- Improving Temporal Generalization of Pre-trained Language Models with
Lexical Semantic Change [28.106524698188675]
Recent research has revealed that neural language models at scale suffer from poor temporal generalization capability.
We propose a simple yet effective lexical-level masking strategy to post-train a converged language model.
arXiv Detail & Related papers (2022-10-31T08:12:41Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Adapt-and-Distill: Developing Small, Fast and Effective Pretrained
Language Models for Domains [45.07506437436464]
We present a general approach to developing small, fast and effective pre-trained models for specific domains.
This is achieved by adapting the off-the-shelf general pre-trained models and performing task-agnostic knowledge distillation in target domains.
arXiv Detail & Related papers (2021-06-25T07:37:05Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Progressive Generation of Long Text with Pretrained Language Models [83.62523163717448]
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators.
It is still challenging for such models to generate coherent long passages of text, especially when the models are fine-tuned to the target domain on a small corpus.
We propose a simple but effective method of generating text in a progressive manner, inspired by generating images from low to high resolution.
arXiv Detail & Related papers (2020-06-28T21:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.