論文の概要: FORCE: Feature-Oriented Representation with Clustering and Explanation
- arxiv url: http://arxiv.org/abs/2504.05530v1
- Date: Mon, 07 Apr 2025 22:05:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:46.065435
- Title: FORCE: Feature-Oriented Representation with Clustering and Explanation
- Title(参考訳): FORCE: クラスタ化と説明による特徴指向表現
- Authors: Rishav Mukherjee, Jeffrey Ahearn Thompson,
- Abstract要約: SHAPに基づく教師付きディープラーニングフレームワークForceを提案する。
ニューラルネットワークアーキテクチャにおけるSHAP値の2段階の使用に依存している。
我々はForceが潜在機能とアテンションフレームワークを組み込まないネットワークと比較して、全体的なパフォーマンスを劇的に改善したことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Learning about underlying patterns in data using latent unobserved structures to improve the accuracy of predictive models has become an active avenue of deep learning research. Most approaches cluster the original features to capture certain latent structures. However, the information gained in the process can often be implicitly derived by sufficiently complex models. Thus, such approaches often provide minimal benefits. We propose a SHAP (Shapley Additive exPlanations) based supervised deep learning framework FORCE which relies on two-stage usage of SHAP values in the neural network architecture, (i) an additional latent feature to guide model training, based on clustering SHAP values, and (ii) initiating an attention mechanism within the architecture using latent information. This approach gives a neural network an indication about the effect of unobserved values that modify feature importance for an observation. The proposed framework is evaluated on three real life datasets. Our results demonstrate that FORCE led to dramatic improvements in overall performance as compared to networks that did not incorporate the latent feature and attention framework (e.g., F1 score for presence of heart disease 0.80 vs 0.72). Using cluster assignments and attention based on SHAP values guides deep learning, enhancing latent pattern learning and overall discriminative capability.
- Abstract(参考訳): 予測モデルの精度を向上させるために、潜在未観測構造を用いてデータの基本パターンを学習することは、ディープラーニング研究の活発な道のりとなっている。
ほとんどのアプローチでは、元の機能をクラスタリングして、特定の潜在構造をキャプチャします。
しかし、プロセスで得られる情報は、しばしば十分に複雑なモデルによって暗黙的に導き出される。
したがって、そのようなアプローチは、しばしば最小限の利益をもたらす。
本稿では,ニューラルネットワークアーキテクチャにおけるSHAP値の2段階的利用に依存する,SHAP(Shapley Additive exPlanations)に基づく教師付きディープラーニングフレームワークFOCEを提案する。
(i)クラスタリングSHAP値に基づいてモデルトレーニングをガイドする追加の潜在機能、
(II)潜時情報を用いたアーキテクチャ内の注意機構の起動。
このアプローチは、観測のために特徴の重要性を変更する未観測値の効果について、ニューラルネットワークに指示を与える。
提案するフレームワークは,3つの実生活データセットを用いて評価する。
以上の結果から,Forceは潜在機能と注意枠組みを組み込まないネットワーク(例えば,心臓病0.80対0.72のF1スコア)と比較して,全体的なパフォーマンスが劇的に向上したことが明らかとなった。
SHAP値に基づくクラスタ割り当てとアテンションを使用することで、ディープラーニングがガイドされ、潜在パターン学習と全体的な識別能力が向上する。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Unsupervised Spatial-Temporal Feature Enrichment and Fidelity
Preservation Network for Skeleton based Action Recognition [20.07820929037547]
非教師なし骨格に基づく行動認識は近年顕著な進歩を遂げている。
既存の教師なし学習手法は、過度なオーバーフィッティング問題に悩まされる。
本稿では,高機能化を実現するために,非教師付き時空間特徴強調・忠実度保存フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-25T09:24:07Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
本稿では,軽量学生モデルの学習のための生成モデルを用いた,革新的な知識蒸留フレームワークについて紹介する。
提案手法の有効性は,多種多様な人気データセットに対する総合的な実験によって実証される。
論文 参考訳(メタデータ) (2023-12-14T03:55:29Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
教師付きニューラル情報検索モデルでは,通過トークンよりも疎注意パターンを学習することが困難であることを示す。
目的とする新しい合成データ生成手法を用いて、与えられた通路内の全てのエンティティに対して、より均一で堅牢な参加をニューラルIRに教える。
論文 参考訳(メタデータ) (2022-04-24T22:36:48Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Explaining Deep Learning Models for Structured Data using Layer-Wise
Relevance Propagation [0.0]
LRP(Layer-wise Relevance)は、コンピュータビジョンにおける深層モデルのための確立された説明可能性技術であり、入力画像の直感的な可読熱マップを提供する。
本稿では,LIME(Local Interpretable Model-Agnostic Ex-planations)とSHAP(Shapley Additive Explanations)の従来の説明可能性概念よりも,LRPが有効であることを示す。
論文 参考訳(メタデータ) (2020-11-26T18:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。