Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting
- URL: http://arxiv.org/abs/2504.05541v2
- Date: Wed, 09 Apr 2025 02:30:44 GMT
- Title: Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting
- Authors: Yunlong Tang, Jing Bi, Chao Huang, Susan Liang, Daiki Shimada, Hang Hua, Yunzhong Xiao, Yizhi Song, Pinxin Liu, Mingqian Feng, Junjia Guo, Zhuo Liu, Luchuan Song, Ali Vosoughi, Jinxi He, Liu He, Zeliang Zhang, Jiebo Luo, Chenliang Xu,
- Abstract summary: We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning.<n>Cat-V integrates three key components: a Segmenter based on SAMI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-UniVL, and a Captioner using Intern-2.5.<n>Our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data.
- Score: 60.58915701973593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning that enables detailed descriptions of user-selected objects through time. CAT-V integrates three key components: a Segmenter based on SAMURAI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-Uni for accurate event boundary detection and temporal analysis, and a Captioner using InternVL-2.5 for generating detailed object-centric descriptions. Through spatiotemporal visual prompts and chain-of-thought reasoning, our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data. CAT-V supports flexible user interactions through various visual prompts (points, bounding boxes, and irregular regions) and maintains temporal sensitivity by tracking object states and interactions across different time segments. Our approach addresses limitations of existing video captioning methods, which either produce overly abstract descriptions or lack object-level precision, enabling fine-grained, object-specific descriptions while maintaining temporal coherence and spatial accuracy. The GitHub repository for this project is available at https://github.com/yunlong10/CAT-V
Related papers
- Context-Aware Temporal Embedding of Objects in Video Data [0.8287206589886881]
In video analysis, understanding the temporal context is crucial for recognizing object interactions, event patterns, and contextual changes over time.
The proposed model leverages adjacency and semantic similarities between objects from neighboring video frames to construct context-aware temporal object embeddings.
Empirical studies demonstrate that our context-aware temporal embeddings can be used in conjunction with conventional visual embeddings to enhance the effectiveness of downstream applications.
arXiv Detail & Related papers (2024-08-23T01:44:10Z) - VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - Disentangling spatio-temporal knowledge for weakly supervised object detection and segmentation in surgical video [10.287675722826028]
This paper introduces Video Spatio-Temporal Disment Networks (VDST-Net) to disentangle information using semi-decoupled temporal knowledge distillation to predict high-quality class activation maps (CAMs)
We demonstrate the efficacy of our framework on a public reference dataset and on a more challenging surgical video dataset where objects are, on average, present in less than 60% of annotated frames.
arXiv Detail & Related papers (2024-07-22T16:52:32Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Prototypical Cross-Attention Networks for Multiple Object Tracking and
Segmentation [95.74244714914052]
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes.
We propose Prototypical Cross-Attention Network (PCAN), capable of leveraging rich-temporal information online.
PCAN outperforms current video instance tracking and segmentation competition winners on Youtube-VIS and BDD100K datasets.
arXiv Detail & Related papers (2021-06-22T17:57:24Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - OVC-Net: Object-Oriented Video Captioning with Temporal Graph and Detail
Enhancement [44.228748086927375]
We introduce the video-based object-oriented video captioning network (OVC)-Net via temporal graph and detail enhancement.
To demonstrate the effectiveness, we conduct experiments on the new dataset and compare it with the state-of-the-art video captioning methods.
arXiv Detail & Related papers (2020-03-08T04:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.