Technical Report: Full Version of Analyzing and Optimizing Perturbation of DP-SGD Geometrically
- URL: http://arxiv.org/abs/2504.05618v1
- Date: Tue, 08 Apr 2025 02:26:10 GMT
- Title: Technical Report: Full Version of Analyzing and Optimizing Perturbation of DP-SGD Geometrically
- Authors: Jiawei Duan, Haibo Hu, Qingqing Ye, Xinyue Sun,
- Abstract summary: We first generalize DP-SGD and theoretically derive the impact of DP noise on the training process.<n>Our analysis reveals that, in terms of a perturbed gradient, only the noise on direction has eminent impact on the model efficiency.<n>We design a geometric strategy GeoDP within the DP framework, which perturbs the direction and the magnitude of a gradient.
- Score: 7.905629859216635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy (DP) has become a prevalent privacy model in a wide range of machine learning tasks, especially after the debut of DP-SGD. However, DP-SGD, which directly perturbs gradients in the training iterations, fails to mitigate the negative impacts of noise on gradient direction. As a result, DP-SGD is often inefficient. Although various solutions (e.g., clipping to reduce the sensitivity of gradients and amplifying privacy bounds to save privacy budgets) are proposed to trade privacy for model efficiency, the root cause of its inefficiency is yet unveiled. In this work, we first generalize DP-SGD and theoretically derive the impact of DP noise on the training process. Our analysis reveals that, in terms of a perturbed gradient, only the noise on direction has eminent impact on the model efficiency while that on magnitude can be mitigated by optimization techniques, i.e., fine-tuning gradient clipping and learning rate. Besides, we confirm that traditional DP introduces biased noise on the direction when adding unbiased noise to the gradient itself. Overall, the perturbation of DP-SGD is actually sub-optimal from a geometric perspective. Motivated by this, we design a geometric perturbation strategy GeoDP within the DP framework, which perturbs the direction and the magnitude of a gradient, respectively. By directly reducing the noise on the direction, GeoDP mitigates the negative impact of DP noise on model efficiency with the same DP guarantee. Extensive experiments on two public datasets (i.e., MNIST and CIFAR-10), one synthetic dataset and three prevalent models (i.e., Logistic Regression, CNN and ResNet) confirm the effectiveness and generality of our strategy.
Related papers
- DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Rethinking Improved Privacy-Utility Trade-off with Pre-existing Knowledge for DP Training [31.559864332056648]
We propose a generic differential privacy framework with heterogeneous noise (DP-Hero)
Atop DP-Hero, we instantiate a heterogeneous version of DP-SGD, where the noise injected into gradient updates is heterogeneous and guided by prior-established model parameters.
We conduct comprehensive experiments to verify and explain the effectiveness of the proposed DP-Hero, showing improved training accuracy compared with state-of-the-art works.
arXiv Detail & Related papers (2024-09-05T08:40:54Z) - DOPPLER: Differentially Private Optimizers with Low-pass Filter for Privacy Noise Reduction [47.65999101635902]
Differentially private (DP) training prevents the leakage of sensitive information in the collected training data from trained machine learning models.
We develop a new component, called DOPPLER, which works by effectively amplifying the gradient while DP noise within this frequency domain.
Our experiments show that the proposed DPs with a lowpass filter outperform their counterparts without the filter by 3%-10% in test accuracy.
arXiv Detail & Related papers (2024-08-24T04:27:07Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in
Private SGD [56.01810892677744]
We show a connection between per-sample gradient norms and the estimation bias of the private gradient oracle used in DP-SGD.
We propose Bias-Aware Minimisation (BAM) that allows for the provable reduction of private gradient estimator bias.
arXiv Detail & Related papers (2023-08-23T09:20:41Z) - Towards the Flatter Landscape and Better Generalization in Federated
Learning under Client-level Differential Privacy [67.33715954653098]
We propose a novel DPFL algorithm named DP-FedSAM, which leverages gradient perturbation to mitigate the negative impact of DP.
Specifically, DP-FedSAM integrates Sharpness Aware of Minimization (SAM) to generate local flatness models with stability and weight robustness.
To further reduce the magnitude random noise while achieving better performance, we propose DP-FedSAM-$top_k$ by adopting the local update sparsification technique.
arXiv Detail & Related papers (2023-05-01T15:19:09Z) - Make Landscape Flatter in Differentially Private Federated Learning [69.78485792860333]
We propose a novel DPFL algorithm named DP-FedSAM, which leverages gradient perturbation to mitigate the negative impact of DP.
Specifically, DP-FedSAM integrates local flatness models with better stability and weight robustness, which results in the small norm of local updates and robustness to DP noise.
Our algorithm achieves state-of-the-art (SOTA) performance compared with existing SOTA baselines in DPFL.
arXiv Detail & Related papers (2023-03-20T16:27:36Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling [23.8561225168394]
differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning.
A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the gradient descent (SGD) commonly used for training.
We propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core of DP-SGD.
arXiv Detail & Related papers (2022-10-18T07:03:14Z) - DP-FP: Differentially Private Forward Propagation for Large Models [2.062295244789704]
We show how to mitigate the performance drop by replacing the Differential Private Gradient Descent with a novel DP Forward-Propagation (DP-FP)
Our DP-FP achieves an average accuracy of 91.34% with privacy budgets less than 3, representing a 3.81% performance improvement over the state-of-the-art DP-SGD.
arXiv Detail & Related papers (2021-12-29T07:32:29Z) - Dynamic Differential-Privacy Preserving SGD [19.273542515320372]
Differentially-Private Gradient Descent (DP-SGD) prevents training-data privacy breaches by adding noise to the clipped gradient during SGD training.
The same clipping operation and additive noise across training steps results in unstable updates and even a ramp-up period.
We propose the dynamic DP-SGD, which has a lower privacy cost than the DP-SGD during updates until they achieve the same target privacy budget.
arXiv Detail & Related papers (2021-10-30T04:45:11Z) - On the Practicality of Differential Privacy in Federated Learning by
Tuning Iteration Times [51.61278695776151]
Federated Learning (FL) is well known for its privacy protection when training machine learning models among distributed clients collaboratively.
Recent studies have pointed out that the naive FL is susceptible to gradient leakage attacks.
Differential Privacy (DP) emerges as a promising countermeasure to defend against gradient leakage attacks.
arXiv Detail & Related papers (2021-01-11T19:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.