Effective Method for Inverse Ising Problem under Missing Observations in Restricted Boltzmann Machines
- URL: http://arxiv.org/abs/2504.05643v2
- Date: Wed, 09 Apr 2025 06:05:02 GMT
- Title: Effective Method for Inverse Ising Problem under Missing Observations in Restricted Boltzmann Machines
- Authors: Kaiji Sekimoto, Muneki Yasuda,
- Abstract summary: Boltzmann machines (RBMs) are energy-based models analogous to the Ising model.<n>In this study, we propose a approximation framework for these expectations in the practical inverse Ising problems.<n>We demonstrate that the proposed method effectively and accurately tunes the model parameters in comparison to the conventional method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Restricted Boltzmann machines (RBMs) are energy-based models analogous to the Ising model and are widely applied in statistical machine learning. The standard inverse Ising problem with a complete dataset requires computing both data and model expectations and is computationally challenging because model expectations have a combinatorial explosion. Furthermore, in many applications, the available datasets are partially incomplete, making it difficult to compute even data expectations. In this study, we propose a approximation framework for these expectations in the practical inverse Ising problems that integrates mean-field approximation or persistent contrastive divergence to generate refined initial points and spatial Monte Carlo integration to enhance estimator accuracy. We demonstrate that the proposed method effectively and accurately tunes the model parameters in comparison to the conventional method.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
Variational inference is a popular way to perform such computations, especially in the Bayesian context.<n>We show that standard mean-field variational inference dramatically underestimates posterior uncertainty in high-dimensions.<n>We then show how appropriately relaxing the mean-field assumption leads to methods whose uncertainty quantification does not deteriorate in high-dimensions.
arXiv Detail & Related papers (2023-12-20T16:12:37Z) - Inferring effective couplings with Restricted Boltzmann Machines [3.150368120416908]
Generative models attempt to encode correlations observed in the data at the level of the Boltzmann weight associated with an energy function in the form of a neural network.
We propose a solution by implementing a direct mapping between the Restricted Boltzmann Machine and an effective Ising spin Hamiltonian.
arXiv Detail & Related papers (2023-09-05T14:55:09Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
Energy-based models (EBMs) are generative models inspired by statistical physics.
The computation of its gradient with respect to the model parameters requires sampling the model distribution.
Here we show how results for nonequilibrium thermodynamics based on Jarzynski equality can be used to perform this computation efficiently.
arXiv Detail & Related papers (2023-05-30T21:07:52Z) - Online machine-learning forecast uncertainty estimation for sequential
data assimilation [0.0]
Quantifying forecast uncertainty is a key aspect of state-of-the-art numerical weather prediction and data assimilation systems.
In this work a machine learning method is presented based on convolutional neural networks that estimates the state-dependent forecast uncertainty.
The hybrid data assimilation method shows similar performance to the ensemble Kalman filter outperforming it when the ensembles are relatively small.
arXiv Detail & Related papers (2023-05-12T19:23:21Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEM acknowledges a priori model misspecification, by embedding forcing within the governing equations.
The method reconstructs the observed data-generating processes with minimal loss of information.
This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix.
arXiv Detail & Related papers (2021-09-10T09:51:43Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
arXiv Detail & Related papers (2020-02-28T21:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.