Nonparametric Estimation in the Dynamic Bradley-Terry Model
- URL: http://arxiv.org/abs/2003.00083v1
- Date: Fri, 28 Feb 2020 21:52:49 GMT
- Title: Nonparametric Estimation in the Dynamic Bradley-Terry Model
- Authors: Heejong Bong, Wanshan Li, Shamindra Shrotriya, Alessandro Rinaldo
- Abstract summary: We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
- Score: 69.70604365861121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a time-varying generalization of the Bradley-Terry model that
allows for nonparametric modeling of dynamic global rankings of distinct teams.
We develop a novel estimator that relies on kernel smoothing to pre-process the
pairwise comparisons over time and is applicable in sparse settings where the
Bradley-Terry may not be fit. We obtain necessary and sufficient conditions for
the existence and uniqueness of our estimator. We also derive time-varying
oracle bounds for both the estimation error and the excess risk in the
model-agnostic setting where the Bradley-Terry model is not necessarily the
true data generating process. We thoroughly test the practical effectiveness of
our model using both simulated and real world data and suggest an efficient
data-driven approach for bandwidth tuning.
Related papers
- HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
In finance, imputation of missing returns may be applied prior to training a portfolio optimization model.
There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data.
We propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation.
arXiv Detail & Related papers (2021-02-25T09:05:35Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Sequential Bayesian Experimental Design for Implicit Models via Mutual
Information [12.68659360172393]
A class of models of particular interest for the natural and medical sciences are implicit models.
We devise a novel sequential design framework for parameter estimation that uses the Mutual Information (MI) between model parameters and simulated data as a utility function.
We find that our framework is efficient for the various implicit models tested, yielding accurate parameter estimates after only a few iterations.
arXiv Detail & Related papers (2020-03-20T16:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.