論文の概要: POD: Predictive Object Detection with Single-Frame FMCW LiDAR Point Cloud
- arxiv url: http://arxiv.org/abs/2504.05649v1
- Date: Tue, 08 Apr 2025 03:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:29:55.644335
- Title: POD: Predictive Object Detection with Single-Frame FMCW LiDAR Point Cloud
- Title(参考訳): POD:単一フレームFMCW LiDAR点雲による予測対象検出
- Authors: Yining Shi, Kun Jiang, Xin Zhao, Kangan Qian, Chuchu Xie, Tuopu Wen, Mengmeng Yang, Diange Yang,
- Abstract要約: 本稿では、周波数変調連続波(FMCW)LiDARの自律的知覚におけるユニークな利点について考察する。
放射速度を計測した単一フレームのFMCW点雲を考えると,物体検出装置は短期的な物体の位置を検出することができると期待できる。
本稿では,新しいPODフレームワークを提案する。その中核となる考え方は,レイキャスティング機構を用いて仮想未来点を生成することである。
- 参考スコア(独自算出の注目度): 14.873096346810723
- License:
- Abstract: LiDAR-based 3D object detection is a fundamental task in the field of autonomous driving. This paper explores the unique advantage of Frequency Modulated Continuous Wave (FMCW) LiDAR in autonomous perception. Given a single frame FMCW point cloud with radial velocity measurements, we expect that our object detector can detect the short-term future locations of objects using only the current frame sensor data and demonstrate a fast ability to respond to intermediate danger. To achieve this, we extend the standard object detection task to a novel task named predictive object detection (POD), which aims to predict the short-term future location and dimensions of objects based solely on current observations. Typically, a motion prediction task requires historical sensor information to process the temporal contexts of each object, while our detector's avoidance of multi-frame historical information enables a much faster response time to potential dangers. The core advantage of FMCW LiDAR lies in the radial velocity associated with every reflected point. We propose a novel POD framework, the core idea of which is to generate a virtual future point using a ray casting mechanism, create virtual two-frame point clouds with the current and virtual future frames, and encode these two-frame voxel features with a sparse 4D encoder. Subsequently, the 4D voxel features are separated by temporal indices and remapped into two Bird's Eye View (BEV) features: one decoded for standard current frame object detection and the other for future predictive object detection. Extensive experiments on our in-house dataset demonstrate the state-of-the-art standard and predictive detection performance of the proposed POD framework.
- Abstract(参考訳): LiDARに基づく3Dオブジェクト検出は、自動運転の分野における基本的な課題である。
本稿では、周波数変調連続波(FMCW)LiDARの自律的知覚におけるユニークな利点について考察する。
放射速度測定を併用した単一フレームFMCW点雲の場合、現在のフレームセンサデータのみを用いて物体の短期的将来の位置を検出でき、中間的危険に迅速に対応できることを期待する。
そこで本研究では,物体の短期的な位置と寸法を,現在の観測のみに基づいて予測することを目的とした,予測対象検出(POD)と呼ばれる新しいタスクに,標準対象検出タスクを拡張した。
通常、動作予測タスクは、各オブジェクトの時間的コンテキストを処理するために、履歴センサ情報を必要とする。
FMCW LiDARの中核的な利点は、すべての反射点に付随する放射速度にある。
提案する新しいPODフレームワークは、レイキャスティング機構を用いて仮想未来点を生成し、現在および仮想未来フレームを用いた仮想2フレーム点雲を作成し、これらの2フレームのボクセル機能をスパース4Dエンコーダでエンコードする。
その後、4Dボクセルの機能は時間指標によって分離され、2つのBird's Eye View(BEV)機能に再マップされる。
社内データセットの大規模な実験により,提案したPODフレームワークの最先端標準と予測検出性能が実証された。
関連論文リスト
- Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception [9.76463525667238]
マルチビューカメラと4Dレーダを融合した最初のフレームワークであるDoracamomを提案する。
コードとモデルは公開されます。
論文 参考訳(メタデータ) (2025-01-26T04:24:07Z) - Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
クロスフレーム動作予測情報を用いた時空間特徴学習を容易にするために,新しいLiDAR 3Dオブジェクト検出フレームワークLiSTMを導入する。
我々は,本フレームワークが優れた3次元検出性能を実現することを示すため,アグリゲーションとnuScenesデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-09-06T16:29:04Z) - Learning Temporal Cues by Predicting Objects Move for Multi-camera 3D Object Detection [9.053936905556204]
本稿では,2分岐ネットワークからなるDAP (Detection After Prediction) モデルを提案する。
分岐(i)から現在のオブジェクトを予測する特徴は、予測知識を伝達するために分岐(ii)に融合される。
私たちのモデルはプラグイン・アンド・プレイで使用することができ、一貫したパフォーマンス向上を示します。
論文 参考訳(メタデータ) (2024-04-02T02:20:47Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
時間的3次元物体検出を効率的に行うために,長期記憶が可能な点トラジェクトリ変換器を提案する。
私たちは、メモリバンクのストレージ要件を最小限に抑えるために、現在のフレームオブジェクトのポイントクラウドとその履歴トラジェクトリを入力として使用します。
大規模データセットに対する広範な実験を行い、我々のアプローチが最先端の手法に対してうまく機能することを実証した。
論文 参考訳(メタデータ) (2023-12-13T18:59:13Z) - DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
既存のオフボード3D検出器は、無限の逐次点雲を利用するために常にモジュラーパイプライン設計に従っている。
その結果, 物体の運動状態は, 物体中心の精製段階において必然的な課題となること, 物体の運動状態は, 物体軌道を十分に生成できないこと, 物体中心の精製段階において必然的な課題となること, の2つの理由から, オフボード型3D検出器の完全なポテンシャルは明らかにされていないことがわかった。
これらの問題に対処するために,DetZero という,オフボード型3次元物体検出の新たなパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-09T16:42:00Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - MoDAR: Using Motion Forecasting for 3D Object Detection in Point Cloud
Sequences [38.7464958249103]
我々は,動き予測出力を仮想モードのタイプとして用いて,LiDAR点雲を増大させるMoDARを提案する。
生のセンサーポイントと仮想ポイントの融合した点雲は、任意のオフザシェルフポイントクラウドベースの3Dオブジェクト検出器に供給される。
論文 参考訳(メタデータ) (2023-06-05T19:28:19Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
本稿では,イベントカメラを用いた物体検出のための新しいバックボーンであるリカレントビジョントランス (RVT) を提案する。
RVTは、イベントベースのオブジェクト検出で最先端のパフォーマンスに到達するために、ゼロからトレーニングすることができる。
私たちの研究は、イベントベースのビジョンを超えた研究に役立ち得る効果的なデザイン選択に、新たな洞察をもたらします。
論文 参考訳(メタデータ) (2022-12-11T20:28:59Z) - MGTANet: Encoding Sequential LiDAR Points Using Long Short-Term
Motion-Guided Temporal Attention for 3D Object Detection [8.305942415868042]
ほとんどのLiDARセンサーは、リアルタイムで一連の点雲を生成する。
近年の研究では、一連の点集合に存在するコンテキストを活用することで、大幅な性能向上が達成されている。
複数の連続走査によって取得された点雲列を符号化する新しい3Dオブジェクト検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-12-01T11:24:47Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - LiDAR-based Online 3D Video Object Detection with Graph-based Message
Passing and Spatiotemporal Transformer Attention [100.52873557168637]
3Dオブジェクト検出器は、通常は単一フレームの検出にフォーカスするが、連続する点のクラウドフレームでは情報を無視する。
本稿では,ポイントシーケンスで動作するエンドツーエンドのオンライン3Dビデオオブジェクト検出器を提案する。
論文 参考訳(メタデータ) (2020-04-03T06:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。